These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33949064)

  • 21. Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
    Withers S; Lu F; Kim H; Zhu Y; Ralph J; Wilkerson CG
    J Biol Chem; 2012 Mar; 287(11):8347-55. PubMed ID: 22267741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula.
    Ha CM; Escamilla-Trevino L; Yarce JC; Kim H; Ralph J; Chen F; Dixon RA
    Plant J; 2016 Jun; 86(5):363-75. PubMed ID: 27037613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of p-coumaroylated lignin in eudicots provides new tools for cell wall engineering.
    Mottiar Y; Smith RA; Karlen SD; Ralph J; Mansfield SD
    New Phytol; 2023 Jan; 237(1):251-264. PubMed ID: 36196006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of lignin-deficient Brachypodium distachyon (L.) Beauv. mutants induced by gamma radiation.
    Lee MB; Kim JY; Seo YW
    J Sci Food Agric; 2017 May; 97(7):2159-2165. PubMed ID: 27604502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon.
    Bouvier d'Yvoire M; Bouchabke-Coussa O; Voorend W; Antelme S; Cézard L; Legée F; Lebris P; Legay S; Whitehead C; McQueen-Mason SJ; Gomez LD; Jouanin L; Lapierre C; Sibout R
    Plant J; 2013 Feb; 73(3):496-508. PubMed ID: 23078216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.
    van Parijs FR; Ruttink T; Boerjan W; Haesaert G; Byrne SL; Asp T; Roldán-Ruiz I; Muylle H
    Plant Biol (Stuttg); 2015 Jul; 17(4):877-92. PubMed ID: 25683375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar.
    de Vries L; MacKay HA; Smith RA; Mottiar Y; Karlen SD; Unda F; Muirragui E; Bingman C; Vander Meulen K; Beebe ET; Fox BG; Ralph J; Mansfield SD
    Plant Physiol; 2022 Feb; 188(2):1014-1027. PubMed ID: 34977949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of
    Le Bris P; Wang Y; Barbereau C; Antelme S; Cézard L; Legée F; D'Orlando A; Dalmais M; Bendahmane A; Schuetz M; Samuels L; Lapierre C; Sibout R
    Biotechnol Biofuels; 2019; 12():181. PubMed ID: 31338123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon.
    Sibout R; Proost S; Hansen BO; Vaid N; Giorgi FM; Ho-Yue-Kuang S; Legée F; Cézart L; Bouchabké-Coussa O; Soulhat C; Provart N; Pasha A; Le Bris P; Roujol D; Hofte H; Jamet E; Lapierre C; Persson S; Mutwil M
    New Phytol; 2017 Aug; 215(3):1009-1025. PubMed ID: 28617955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LACCASE5 is required for lignification of the Brachypodium distachyon Culm.
    Wang Y; Bouchabke-Coussa O; Lebris P; Antelme S; Soulhat C; Gineau E; Dalmais M; Bendahmane A; Morin H; Mouille G; Legée F; Cézard L; Lapierre C; Sibout R
    Plant Physiol; 2015 May; 168(1):192-204. PubMed ID: 25755252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice.
    Dwivedi N; Yamamoto S; Zhao Y; Hou G; Bowling F; Tobimatsu Y; Liu CJ
    Plant Biotechnol J; 2024 Feb; 22(2):330-346. PubMed ID: 37795899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes.
    Jardim-Messeder D; da Franca Silva T; Fonseca JP; Junior JN; Barzilai L; Felix-Cordeiro T; Pereira JC; Rodrigues-Ferreira C; Bastos I; da Silva TC; de Abreu Waldow V; Cassol D; Pereira W; Flausino B; Carniel A; Faria J; Moraes T; Cruz FP; Loh R; Van Montagu M; Loureiro ME; de Souza SR; Mangeon A; Sachetto-Martins G
    Mol Genet Genomics; 2020 May; 295(3):717-739. PubMed ID: 32124034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant.
    Patten AM; Cardenas CL; Cochrane FC; Laskar DD; Bedgar DL; Davin LB; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2092-107. PubMed ID: 16153410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon.
    Kapp N; Barnes WJ; Richard TL; Anderson CT
    J Exp Bot; 2015 Jul; 66(14):4295-304. PubMed ID: 25922482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification.
    Bartley LE; Peck ML; Kim SR; Ebert B; Manisseri C; Chiniquy DM; Sykes R; Gao L; Rautengarten C; Vega-Sánchez ME; Benke PI; Canlas PE; Cao P; Brewer S; Lin F; Smith WL; Zhang X; Keasling JD; Jentoff RE; Foster SB; Zhou J; Ziebell A; An G; Scheller HV; Ronald PC
    Plant Physiol; 2013 Apr; 161(4):1615-33. PubMed ID: 23391577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant cell wall lignification and monolignol metabolism.
    Wang Y; Chantreau M; Sibout R; Hawkins S
    Front Plant Sci; 2013; 4():220. PubMed ID: 23847630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases.
    Chandrakanth NN; Zhang C; Freeman J; de Souza WR; Bartley LE; Mitchell RAC
    Front Plant Sci; 2022; 13():1088879. PubMed ID: 36733587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BdCESA7, BdCESA8, and BdPMT Utility Promoter Constructs for Targeted Expression to Secondary Cell-Wall-Forming Cells of Grasses.
    Petrik DL; Cass CL; Padmakshan D; Foster CE; Vogel JP; Karlen SD; Ralph J; Sedbrook JC
    Front Plant Sci; 2016; 7():55. PubMed ID: 26870070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.