These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33949407)

  • 1. Chiral self-sorting of active semiflexible filaments with intrinsic curvature.
    Moore JM; Glaser MA; Betterton MD
    Soft Matter; 2021 May; 17(17):4559-4565. PubMed ID: 33949407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness.
    Moore JM; Thompson TN; Glaser MA; Betterton MD
    Soft Matter; 2020 Oct; 16(41):9436-9442. PubMed ID: 32959862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral and nematic phases of flexible active filaments.
    Dunajova Z; Mateu BP; Radler P; Lim K; Brandis D; Velicky P; Danzl JG; Wong RW; Elgeti J; Hannezo E; Loose M
    Nat Phys; 2023; 19(12):1916-1926. PubMed ID: 38075437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective dynamics of self-propelled semiflexible filaments.
    Duman Ö; Isele-Holder RE; Elgeti J; Gompper G
    Soft Matter; 2018 Jun; 14(22):4483-4494. PubMed ID: 29808191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion transition of active filaments: rotation without hydrodynamic interactions.
    Jiang H; Hou Z
    Soft Matter; 2014 Feb; 10(7):1012-7. PubMed ID: 24983114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsion and curvature of FtsZ filaments.
    González de Prado Salas P; Hörger I; Martín-García F; Mendieta J; Alonso Á; Encinar M; Gómez-Puertas P; Vélez M; Tarazona P
    Soft Matter; 2014 Mar; 10(12):1977-86. PubMed ID: 24652404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.
    Ramírez-Aportela E; López-Blanco JR; Andreu JM; Chacón P
    Biophys J; 2014 Nov; 107(9):2164-76. PubMed ID: 25418101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rods-on-string idealization captures semiflexible filament dynamics.
    Chandran PL; Mofrad MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011906. PubMed ID: 19257068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using active colloids as machines to weave and braid on the micrometer scale.
    Goodrich CP; Brenner MP
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):257-262. PubMed ID: 28034922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Topography Induces and Orients Nematic Swarms of Active Filaments: Considerations for Lab-On-A-Chip Devices.
    Barakat JM; Modica KJ; Lu L; Anujarerat S; Choi KH; Takatori SC
    ACS Appl Nano Mater; 2024 May; 7(10):12142-12152. PubMed ID: 38808306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spindles and active vortices in a model of confined filament-motor mixtures.
    Head DA; Briels W; Gompper G
    BMC Biophys; 2011 Nov; 4():18. PubMed ID: 22087580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and dynamical properties of semiflexible filaments driven by molecular motors.
    Gupta N; Chaudhuri A; Chaudhuri D
    Phys Rev E; 2019 Apr; 99(4-1):042405. PubMed ID: 31108695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
    Huecas S; Ramírez-Aportela E; Vergoñós A; Núñez-Ramírez R; Llorca O; Díaz JF; Juan-Rodríguez D; Oliva MA; Castellen P; Andreu JM
    Biophys J; 2017 Oct; 113(8):1831-1844. PubMed ID: 29045877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organization of mortal filaments and its role in bacterial division ring formation.
    Vanhille-Campos C; Whitley KD; Radler P; Loose M; Holden S; Šarić A
    Nat Phys; 2024; 20(10):1670-1678. PubMed ID: 39416851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alignment of actin filament streams driven by myosin motors in crowded environments.
    Iwase T; Sasaki Y; Hatori K
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2717-2725. PubMed ID: 28754385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emergence and transient behaviour of collective motion in active filament systems.
    Suzuki R; Bausch AR
    Nat Commun; 2017 Jun; 8(1):41. PubMed ID: 28659581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture.
    Ramirez-Diaz DA; García-Soriano DA; Raso A; Mücksch J; Feingold M; Rivas G; Schwille P
    PLoS Biol; 2018 May; 16(5):e2004845. PubMed ID: 29775478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filament rigidity and connectivity tune the deformation modes of active biopolymer networks.
    Stam S; Freedman SL; Banerjee S; Weirich KL; Dinner AR; Gardel ML
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10037-E10045. PubMed ID: 29114058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronized oscillations, traveling waves, and jammed clusters induced by steric interactions in active filament arrays.
    Chelakkot R; Hagan MF; Gopinath A
    Soft Matter; 2021 Jan; 17(4):1091-1104. PubMed ID: 33289748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broken Detailed Balance of Filament Dynamics in Active Networks.
    Gladrow J; Fakhri N; MacKintosh FC; Schmidt CF; Broedersz CP
    Phys Rev Lett; 2016 Jun; 116(24):248301. PubMed ID: 27367410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.