These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33949427)

  • 21. Advances in Label-Free Detections for Nanofluidic Analytical Devices.
    Le THH; Shimizu H; Morikawa K
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32977690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.
    Shimizu H; Miyawaki N; Asano Y; Mawatari K; Kitamori T
    Anal Chem; 2017 Jun; 89(11):6043-6049. PubMed ID: 28494144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes.
    Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L
    Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels.
    Menard LD; Ramsey JM
    Anal Chem; 2013 Jan; 85(2):1146-53. PubMed ID: 23234458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels.
    Duan C; Alibakhshi MA; Kim DK; Brown CM; Craik CS; Majumdar A
    ACS Nano; 2016 Aug; 10(8):7476-84. PubMed ID: 27472431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing.
    Zeng H; Zhou S; Xie L; Liang Q; Zhang X; Yan M; Huang Y; Liu T; Chen P; Zhang L; Liang K; Jiang L; Kong B
    Biosens Bioelectron; 2023 Feb; 222():114985. PubMed ID: 36493724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.
    Morikawa K; Ohta R; Mawatari K; Kitamori T
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in single-molecule detection on micro- and nano-fluidic devices.
    Liu C; Qu Y; Luo Y; Fang N
    Electrophoresis; 2011 Nov; 32(23):3308-18. PubMed ID: 22134976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Femtoliter-scale separation and sensitive detection of nonfluorescent samples in an extended-nano fluidic device.
    Shimizu H; Mawatari K; Kitamori T
    Analyst; 2014 May; 139(9):2154-7. PubMed ID: 24647438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels.
    Ishibashi R; Mawatari K; Kitamori T
    J Chromatogr A; 2012 May; 1238():152-5. PubMed ID: 22503926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure-driven flow control system for nanofluidic chemical process.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T
    J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
    Xia L; Choi C; Kothekar SC; Dutta D
    Anal Chem; 2016 Jan; 88(1):781-8. PubMed ID: 26636608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of nonfluorescent molecules using differential interference contrast thermal lens microscope for extended nanochannel chromatography.
    Shimizu H; Mawatari K; Kitamori T
    J Sep Sci; 2011 Oct; 34(20):2920-4. PubMed ID: 21826792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.