BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 33949441)

  • 1. Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?
    Silveira MJ; Castro F; Oliveira MJ; Sarmento B
    Biomater Sci; 2021 May; 9(9):3228-3243. PubMed ID: 33949441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy.
    Abdelgalil RM; Elmorshedy YM; Elkhodairy KA; Teleb M; Bekhit AA; Khattab SN; Elzoghby AO
    Nanomedicine (Lond); 2022 Sep; 17(22):1721-1745. PubMed ID: 36621872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy.
    Mao Q; Min J; Zeng R; Liu H; Li H; Zhang C; Zheng A; Lin J; Liu X; Wu M
    Theranostics; 2022; 12(14):6088-6105. PubMed ID: 36168633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment.
    Sun B; Hyun H; Li LT; Wang AZ
    Acta Pharmacol Sin; 2020 Jul; 41(7):970-985. PubMed ID: 32424240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer.
    Ren SN; Zhang ZY; Guo RJ; Wang DR; Chen FF; Chen XB; Fang XD
    World J Gastroenterol; 2023 Apr; 29(13):1911-1941. PubMed ID: 37155531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling tumor microenvironment with nanomedicines.
    Martin JD; Miyazaki T; Cabral H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1730. PubMed ID: 34124849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.
    Zanganeh S; Spitler R; Hutter G; Ho JQ; Pauliah M; Mahmoudi M
    Immunotherapy; 2017 Sep; 9(10):819-835. PubMed ID: 28877626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis.
    Zhang P; Zhai Y; Cai Y; Zhao Y; Li Y
    Adv Mater; 2019 Dec; 31(49):e1904156. PubMed ID: 31566275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.
    Zhu Y; Yu X; Thamphiwatana SD; Zheng Y; Pang Z
    Acta Pharm Sin B; 2020 Nov; 10(11):2054-2074. PubMed ID: 33304779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy.
    Huang Y; Fan H; Ti H
    Asian J Pharm Sci; 2024 Apr; 19(2):100902. PubMed ID: 38595331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?
    O'Malley G; Heijltjes M; Houston AM; Rani S; Ritter T; Egan LJ; Ryan AE
    Oncotarget; 2016 Sep; 7(37):60752-60774. PubMed ID: 27542276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Janus Face of Tumor Microenvironment Targeted by Immunotherapy.
    Buoncervello M; Gabriele L; Toschi E
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy.
    Kamal Y; Schmit SL; Frost HR; Amos CI
    Immunotherapy; 2020 Oct; 12(14):1083-1100. PubMed ID: 32787587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy.
    Chen Q; Xu L; Chen J; Yang Z; Liang C; Yang Y; Liu Z
    Biomaterials; 2017 Dec; 148():69-80. PubMed ID: 28968536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.
    Martin JD; Cabral H; Stylianopoulos T; Jain RK
    Nat Rev Clin Oncol; 2020 Apr; 17(4):251-266. PubMed ID: 32034288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.
    Hameed S; Bhattarai P; Dai Z
    Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer.
    Subtil B; Cambi A; Tauriello DVF; de Vries IJM
    Front Immunol; 2021; 12():724883. PubMed ID: 34691029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune Adaptation of Colorectal Cancer Stem Cells and Their Interaction With the Tumor Microenvironment.
    Lin CC; Liao TT; Yang MH
    Front Oncol; 2020; 10():588542. PubMed ID: 33312953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.