BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33949608)

  • 21. Analyzing Temperature Distribution Patterns on the Facing and Backside Surface: Investigating Combustion Performance of Flame-Retardant Particle Boards Using Aluminum Hypophosphite, Intumescent, and Magnesium Hydroxide Flame Retardants.
    Pan F; Jia H; Huang Y; Chen Z; Liang S; Jiang P
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings.
    Wi S; Yang S; Berardi U; Kim S
    Environ Int; 2019 Sep; 130():104900. PubMed ID: 31280051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of the fire behaviour of wood: From pyrolysis to fire retardant mechanisms.
    Mensah RA; Jiang L; Renner JS; Xu Q
    J Therm Anal Calorim; 2023; 148(4):1407-1422. PubMed ID: 35910335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infusing phytate-based biomass flame retardants into the cellulose lumens of Chinese fir wood attains superior flame retardant efficacy.
    Fan S; Gao X; Yang X; Li X
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128975. PubMed ID: 38147971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fire Behavior of Wood-Based Composite Materials.
    Renner JS; Mensah RA; Jiang L; Xu Q; Das O; Berto F
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Inorganic Coatings Incorporated with Functionalized Graphene Oxide Nanosheets for Improving Fire Retardancy of Wooden Substrates.
    Tasi TP; Hsieh CT; Yang HC; Huang HY; Wu MW; Ashraf Gandomi Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile construction of bio-based high fire-safety cellulose fabrics with well wearing performance.
    Wang TC; He XH; Hu W; Zhu L; Shao ZB
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127349. PubMed ID: 37838134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A thermally insulating vermiculite nanosheet-epoxy nanocomposite paint as a fire-resistant wood coating.
    Sethurajaperumal A; Manohar A; Banerjee A; Varrla E; Wang H; Ostrikov KK
    Nanoscale Adv; 2021 Jul; 3(14):4235-4243. PubMed ID: 36132838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam.
    Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Extinguishing Resin Transfer Molding Composites Using Non-Fire-Retardant Epoxy Resin.
    Geng Z; Yang S; Zhang L; Huang Z; Pan Q; Li J; Weng J; Bao J; You Z; He Y; Zhu B
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30558309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research Progress on the Improvement of Flame Retardancy, Hydrophobicity, and Antibacterial Properties of Wood Surfaces.
    Jian H; Liang Y; Deng C; Xu J; Liu Y; Shi J; Wen M; Park HJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers.
    Riehle F; Hoenders D; Guo J; Eckert A; Ifuku S; Walther A
    Biomacromolecules; 2019 Feb; 20(2):1098-1108. PubMed ID: 30615421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam.
    Jiang Q; Li P; Liu Y; Zhu P
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.
    Wu Q; Zhang Q; Zhao L; Li SN; Wu LB; Jiang JX; Tang LC
    J Hazard Mater; 2017 Aug; 336():222-231. PubMed ID: 28494310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface coated ZnO powder as flame retardant for wood: A short communication.
    Öhrn O; Sykam K; Gawusu S; Mensah RA; Försth M; Shanmugam V; Karthik Babu NB; Sas G; Jiang L; Xu Q; Restás Á; Das O
    Sci Total Environ; 2023 Nov; 897():165290. PubMed ID: 37406703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in the Development of Fire-Resistant Biocomposites-A Review.
    Madyaratri EW; Ridho MR; Aristri MA; Lubis MAR; Iswanto AH; Nawawi DS; Antov P; Kristak L; Majlingová A; Fatriasari W
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Effective Expanded Graphite Coating on Polystyrene Bead for Improving Flame Retardancy.
    Bae M; Lee H; Choi G; Kang J
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.
    Chatterjee S; Shanmuganathan K; Kumaraswamy G
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44864-44872. PubMed ID: 29206442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
    Davis R; Li YC; Gervasio M; Luu J; Kim YS
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacture and Combustion Characteristics of Cellulose Flame-Retardant Plate through the Hot-Press Method.
    Hwang J; Park D; Rie D
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.