These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33950243)

  • 1. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas.
    López-Cortegano E; Craig RJ; Chebib J; Samuels T; Morgan AD; Kraemer SA; Böndel KB; Ness RW; Colegrave N; Keightley PD
    Mol Biol Evol; 2021 Aug; 38(9):3709-3723. PubMed ID: 33950243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Colegrave N; Keightley PD
    Genetics; 2012 Dec; 192(4):1447-54. PubMed ID: 23051642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Vasanthakrishnan RB; Colegrave N; Keightley PD
    Genome Res; 2015 Nov; 25(11):1739-49. PubMed ID: 26260971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of Chlamydomonas.
    Craig RJ; Hasan AR; Ness RW; Keightley PD
    Plant Cell; 2021 May; 33(4):1016-1041. PubMed ID: 33793842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates and spectra of de novo structural mutations in
    López-Cortegano E; Craig RJ; Chebib J; Balogun EJ; Keightley PD
    Genome Res; 2023 Jan; 33(1):45-60. PubMed ID: 36617667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome.
    Ness RW; Kraemer SA; Colegrave N; Keightley PD
    Mol Biol Evol; 2016 Mar; 33(3):800-8. PubMed ID: 26615203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt stress alters the spectrum of de novo mutation available to selection during experimental adaptation of Chlamydomonas reinhardtii.
    Hasan AR; Lachapelle J; El-Shawa SA; Potjewyd R; Ford SA; Ness RW
    Evolution; 2022 Oct; 76(10):2450-2463. PubMed ID: 36036481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii.
    Flynn JM; Lower SE; Barbash DA; Clark AG
    Genome Biol Evol; 2018 Jul; 10(7):1673-1686. PubMed ID: 29931069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii.
    Kraemer SA; Böndel KB; Ness RW; Keightley PD; Colegrave N
    Evolution; 2017 Dec; 71(12):2918-2929. PubMed ID: 28884790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.
    Morgan AD; Ness RW; Keightley PD; Colegrave N
    Evolution; 2014 Sep; 68(9):2589-602. PubMed ID: 24826801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii.
    Balogun EJ; Ness RW
    Mol Biol Evol; 2024 Mar; 41(3):. PubMed ID: 38366781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii.
    Flowers JM; Hazzouri KM; Pham GM; Rosas U; Bahmani T; Khraiwesh B; Nelson DR; Jijakli K; Abdrabu R; Harris EH; Lefebvre PA; Hom EF; Salehi-Ashtiani K; Purugganan MD
    Plant Cell; 2015 Sep; 27(9):2353-69. PubMed ID: 26392080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii.
    Jang H; Ehrenreich IM
    PLoS One; 2012; 7(7):e41307. PubMed ID: 22848460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary rates and expression level in Chlamydomonas.
    Popescu CE; Borza T; Bielawski JP; Lee RW
    Genetics; 2006 Mar; 172(3):1567-76. PubMed ID: 16361241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii.
    Barahimipour R; Strenkert D; Neupert J; Schroda M; Merchant SS; Bock R
    Plant J; 2015 Nov; 84(4):704-17. PubMed ID: 26402748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.
    Lin H; Kwan AL; Dutcher SK
    PLoS Genet; 2010 Sep; 6(9):e1001105. PubMed ID: 20838591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid evolution of sex-related genes in Chlamydomonas.
    Ferris PJ; Pavlovic C; Fabry S; Goodenough UW
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8634-9. PubMed ID: 9238029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii.
    Denovan-Wright EM; Lee RW
    J Mol Biol; 1994 Aug; 241(2):298-311. PubMed ID: 7520083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous giant viruses contribute to intraspecies genomic variability in the model green alga
    Moniruzzaman M; Erazo-Garcia MP; Aylward FO
    Virus Evol; 2022; 8(2):veac102. PubMed ID: 36447475
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.