These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 33950243)
1. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. López-Cortegano E; Craig RJ; Chebib J; Samuels T; Morgan AD; Kraemer SA; Böndel KB; Ness RW; Colegrave N; Keightley PD Mol Biol Evol; 2021 Aug; 38(9):3709-3723. PubMed ID: 33950243 [TBL] [Abstract][Full Text] [Related]
2. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii. Ness RW; Morgan AD; Colegrave N; Keightley PD Genetics; 2012 Dec; 192(4):1447-54. PubMed ID: 23051642 [TBL] [Abstract][Full Text] [Related]
3. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii. Ness RW; Morgan AD; Vasanthakrishnan RB; Colegrave N; Keightley PD Genome Res; 2015 Nov; 25(11):1739-49. PubMed ID: 26260971 [TBL] [Abstract][Full Text] [Related]
5. Rates and spectra of de novo structural mutations in López-Cortegano E; Craig RJ; Chebib J; Balogun EJ; Keightley PD Genome Res; 2023 Jan; 33(1):45-60. PubMed ID: 36617667 [TBL] [Abstract][Full Text] [Related]
6. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome. Ness RW; Kraemer SA; Colegrave N; Keightley PD Mol Biol Evol; 2016 Mar; 33(3):800-8. PubMed ID: 26615203 [TBL] [Abstract][Full Text] [Related]
7. Salt stress alters the spectrum of de novo mutation available to selection during experimental adaptation of Chlamydomonas reinhardtii. Hasan AR; Lachapelle J; El-Shawa SA; Potjewyd R; Ford SA; Ness RW Evolution; 2022 Oct; 76(10):2450-2463. PubMed ID: 36036481 [TBL] [Abstract][Full Text] [Related]
8. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. Flynn JM; Lower SE; Barbash DA; Clark AG Genome Biol Evol; 2018 Jul; 10(7):1673-1686. PubMed ID: 29931069 [TBL] [Abstract][Full Text] [Related]
9. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii. Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179 [TBL] [Abstract][Full Text] [Related]
10. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii. Kraemer SA; Böndel KB; Ness RW; Keightley PD; Colegrave N Evolution; 2017 Dec; 71(12):2918-2929. PubMed ID: 28884790 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii. Morgan AD; Ness RW; Keightley PD; Colegrave N Evolution; 2014 Sep; 68(9):2589-602. PubMed ID: 24826801 [TBL] [Abstract][Full Text] [Related]
12. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii. Balogun EJ; Ness RW Mol Biol Evol; 2024 Mar; 41(3):. PubMed ID: 38366781 [TBL] [Abstract][Full Text] [Related]
13. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii. Flowers JM; Hazzouri KM; Pham GM; Rosas U; Bahmani T; Khraiwesh B; Nelson DR; Jijakli K; Abdrabu R; Harris EH; Lefebvre PA; Hom EF; Salehi-Ashtiani K; Purugganan MD Plant Cell; 2015 Sep; 27(9):2353-69. PubMed ID: 26392080 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii. Jang H; Ehrenreich IM PLoS One; 2012; 7(7):e41307. PubMed ID: 22848460 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary rates and expression level in Chlamydomonas. Popescu CE; Borza T; Bielawski JP; Lee RW Genetics; 2006 Mar; 172(3):1567-76. PubMed ID: 16361241 [TBL] [Abstract][Full Text] [Related]
16. Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Barahimipour R; Strenkert D; Neupert J; Schroda M; Merchant SS; Bock R Plant J; 2015 Nov; 84(4):704-17. PubMed ID: 26402748 [TBL] [Abstract][Full Text] [Related]
17. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. Lin H; Kwan AL; Dutcher SK PLoS Genet; 2010 Sep; 6(9):e1001105. PubMed ID: 20838591 [TBL] [Abstract][Full Text] [Related]
18. Rapid evolution of sex-related genes in Chlamydomonas. Ferris PJ; Pavlovic C; Fabry S; Goodenough UW Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8634-9. PubMed ID: 9238029 [TBL] [Abstract][Full Text] [Related]
19. Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii. Denovan-Wright EM; Lee RW J Mol Biol; 1994 Aug; 241(2):298-311. PubMed ID: 7520083 [TBL] [Abstract][Full Text] [Related]
20. Endogenous giant viruses contribute to intraspecies genomic variability in the model green alga Moniruzzaman M; Erazo-Garcia MP; Aylward FO Virus Evol; 2022; 8(2):veac102. PubMed ID: 36447475 [No Abstract] [Full Text] [Related] [Next] [New Search]