These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33950323)

  • 1. Reference Electrode Standardization Interpolation Technique (RESIT): A Novel Interpolation Method for Scalp EEG.
    Dong L; Zhao L; Zhang Y; Yu X; Li F; Li J; Lai Y; Liu T; Yao D
    Brain Topogr; 2021 Jul; 34(4):403-414. PubMed ID: 33950323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assigning channel weights using an attention mechanism: an EEG interpolation algorithm.
    Liu R; Wang Z; Qiu J; Wang X
    Front Neurosci; 2023; 17():1251677. PubMed ID: 37811329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative signal quality assessment for large-scale continuous scalp electroencephalography from a big data perspective.
    Zhao L; Zhang Y; Yu X; Wu H; Wang L; Li F; Duan M; Lai Y; Liu T; Dong L; Yao D
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 35952665
    [No Abstract]   [Full Text] [Related]  

  • 4. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG.
    Dong L; Li F; Liu Q; Wen X; Lai Y; Xu P; Yao D
    Front Neurosci; 2017; 11():601. PubMed ID: 29163006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to standardize a reference of scalp EEG recordings to a point at infinity.
    Yao D
    Physiol Meas; 2001 Nov; 22(4):693-711. PubMed ID: 11761077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WeBrain: A web-based brainformatics platform of computational ecosystem for EEG big data analysis.
    Dong L; Li J; Zou Q; Zhang Y; Zhao L; Wen X; Gong J; Li F; Liu T; Evans AC; Valdes-Sosa PA; Yao D
    Neuroimage; 2021 Dec; 245():118713. PubMed ID: 34798231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of electroencephalographic data using radial basis functions.
    Jäger J; Klein A; Buhmann M; Skrandies W
    Clin Neurophysiol; 2016 Apr; 127(4):1978-83. PubMed ID: 26971479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording.
    Greischar LL; Burghy CA; van Reekum CM; Jackson DC; Pizzagalli DA; Mueller C; Davidson RJ
    Clin Neurophysiol; 2004 Mar; 115(3):710-20. PubMed ID: 15036067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the reference choice on scalp EEG connectivity estimation.
    Chella F; Pizzella V; Zappasodi F; Marzetti L
    J Neural Eng; 2016 Jun; 13(3):036016. PubMed ID: 27138114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review.
    Kayser J; Tenke CE
    Int J Psychophysiol; 2015 Sep; 97(3):189-209. PubMed ID: 25920962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifactually high coherences result from using spherical spline computation of scalp current density.
    Biggins CA; Fein G; Raz J; Amir A
    Electroencephalogr Clin Neurophysiol; 1991 Nov; 79(5):413-9. PubMed ID: 1718714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithmic localization of high-density EEG electrode positions using motion capture.
    Hirth LN; Stanley CJ; Damiano DL; Bulea TC
    J Neurosci Methods; 2020 Dec; 346():108919. PubMed ID: 32853593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual EEG-electrodes: Convolutional neural networks as a method for upsampling or restoring channels.
    Svantesson M; Olausson H; Eklund A; Thordstein M
    J Neurosci Methods; 2021 May; 355():109126. PubMed ID: 33711358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistor mesh model of a spherical head: part 1: applications to scalp potential interpolation.
    Chauveau N; Morucci JP; Franceries X; Celsis P; Rigaud B
    Med Biol Eng Comput; 2005 Nov; 43(6):694-702. PubMed ID: 16594294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic comparisons of interpolation techniques in topographic brain mapping.
    Soong AC; Lind JC; Shaw GR; Koles ZJ
    Electroencephalogr Clin Neurophysiol; 1993 Oct; 87(4):185-95. PubMed ID: 7691549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-registration of EEG and MRI data using matching of spline interpolated and MRI-segmented reconstructions of the scalp surface.
    Lamm C; Windischberger C; Leodolter U; Moser E; Bauer H
    Brain Topogr; 2001; 14(2):93-100. PubMed ID: 11797814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of scalp potentials by surface spline interpolation.
    Perrin F; Pernier J; Bertrand O; Giard MH; Echallier JF
    Electroencephalogr Clin Neurophysiol; 1987 Jan; 66(1):75-81. PubMed ID: 2431869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy.
    Weisdorf S; Gangstad SW; Duun-Henriksen J; Mosholt KSS; Kjær TW
    J Neurophysiol; 2018 Sep; 120(3):1451-1460. PubMed ID: 29995605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals.
    Trujillo LT; Stanfield CT; Vela RD
    Front Neurosci; 2017; 11():425. PubMed ID: 28790884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hearing the Sound in the Brain: Influences of Different EEG References.
    Wu D
    Front Neurosci; 2018; 12():148. PubMed ID: 29593487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.