These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33950491)

  • 1. Application of SILAC Labeling in Phosphoproteomics Analysis.
    Stepath M; Bracht T
    Methods Mol Biol; 2021; 2228():167-183. PubMed ID: 33950491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis.
    Wilkes E; Cutillas PR
    Methods Mol Biol; 2017; 1636():199-217. PubMed ID: 28730481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages.
    Benz C; Urbaniak MD
    Methods Mol Biol; 2020; 2116():125-137. PubMed ID: 32221919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.
    Loroch S; Schommartz T; Brune W; Zahedi RP; Sickmann A
    Biochim Biophys Acta; 2015 May; 1854(5):460-8. PubMed ID: 25619855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Based Mass Spectrometry Approaches for Robust Quantification of the Phosphoproteome and Total Proteome in Toxoplasma gondii.
    Broncel M; Treeck M
    Methods Mol Biol; 2020; 2071():453-468. PubMed ID: 31758466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative Quantification of Phosphorylated and Glycosylated Peptides from the Same Sample Using Isobaric Chemical Labelling with a Two-Step Enrichment Strategy.
    Silbern I; Fang P; Ji Y; Christof L; Urlaub H; Pan KT
    Methods Mol Biol; 2021; 2228():185-203. PubMed ID: 33950492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.
    Tebbe A; Klammer M; Sighart S; Schaab C; Daub H
    Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer.
    Oppermann FS; Klammer M; Bobe C; Cox J; Schaab C; Tebbe A; Daub H
    J Proteome Res; 2013 Sep; 12(9):4089-100. PubMed ID: 23898821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SILAC in biomarker discovery.
    Orsburn BC
    Methods Mol Biol; 2013; 1002():123-31. PubMed ID: 23625400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.