BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 33950496)

  • 1. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
    Dannenmaier S; Stiller SB; Morgenstern M; Lübbert P; Oeljeklaus S; Wiedemann N; Warscheid B
    Anal Chem; 2018 Sep; 90(17):10501-10509. PubMed ID: 30102515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SILAC labeling of yeast for the study of membrane protein complexes.
    Oeljeklaus S; Schummer A; Suppanz I; Warscheid B
    Methods Mol Biol; 2014; 1188():23-46. PubMed ID: 25059602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for sporulating budding yeast cells that allows for unbiased identification of kinase substrates using stable isotope labeling by amino acids in cell culture.
    Suhandynata R; Liang J; Albuquerque CP; Zhou H; Hollingsworth NM
    G3 (Bethesda); 2014 Aug; 4(11):2125-35. PubMed ID: 25168012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation.
    Fröhlich F; Christiano R; Walther TC
    Mol Cell Proteomics; 2013 Jul; 12(7):1995-2005. PubMed ID: 23592334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.
    Martin-Perez M; Villén J
    Anal Chem; 2015 Apr; 87(7):4008-14. PubMed ID: 25767917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
    de Godoy LM; Olsen JV; Cox J; Nielsen ML; Hubner NC; Fröhlich F; Walther TC; Mann M
    Nature; 2008 Oct; 455(7217):1251-4. PubMed ID: 18820680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC.
    Caslavka Zempel KE; Vashisht AA; Barshop WD; Wohlschlegel JA; Clarke SG
    J Proteome Res; 2016 Dec; 15(12):4436-4451. PubMed ID: 27696855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.
    Kaneva IN; Longworth J; Sudbery PE; Dickman MJ
    Proteomics; 2018 Mar; 18(5-6):e1700278. PubMed ID: 29280593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTIPS: a novel method of unsupervised determination of isotopic amino acid distribution in SILAC experiments.
    Dilworth DJ; Saleem RA; Rogers RS; Mirzaei H; Boyle J; Aitchison JD
    J Am Soc Mass Spectrom; 2010 Aug; 21(8):1417-22. PubMed ID: 20451407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteome of baker's yeast mitochondria.
    Gonczarowska-Jorge H; Zahedi RP; Sickmann A
    Mitochondrion; 2017 Mar; 33():15-21. PubMed ID: 27535110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
    Maček B; Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top079814. PubMed ID: 28572211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2019; 1140():531-539. PubMed ID: 31347069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SILAC yeast: from labeling to comprehensive proteome quantification.
    de Godoy LM
    Methods Mol Biol; 2014; 1156():81-109. PubMed ID: 24791983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed quantification for data-independent acquisition.
    Minogue CE; Hebert AS; Rensvold JW; Westphall MS; Pagliarini DJ; Coon JJ
    Anal Chem; 2015 Mar; 87(5):2570-5. PubMed ID: 25621425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice.
    Overmyer KA; Tyanova S; Hebert AS; Westphall MS; Cox J; Coon JJ
    Nat Protoc; 2018 Jan; 13(1):293-306. PubMed ID: 29323663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.