These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 33950669)
1. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic SiO Sun Y; He H; Huang X; Guo Z ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243 [TBL] [Abstract][Full Text] [Related]
4. Hierarchically Patterned Self-Cleaning Polymer Composites for Daytime Radiative Cooling. Zhou K; Yan X; Oh SJ; Padilla-Rivera G; Kim HA; Cropek DM; Miljkovic N; Cai L Nano Lett; 2023 May; 23(9):3669-3677. PubMed ID: 37079783 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic Composite Coatings Can Achieve Durability and Efficient Radiative Cooling of Energy-Saving Buildings. Zhou W; Ma X; Liu M; Niu J; Wang S; Li S; Wang W; Fan Y ACS Appl Mater Interfaces; 2024 Sep; 16(35):46703-46718. PubMed ID: 39177497 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Mandal J; Fu Y; Overvig AC; Jia M; Sun K; Shi NN; Zhou H; Xiao X; Yu N; Yang Y Science; 2018 Oct; 362(6412):315-319. PubMed ID: 30262632 [TBL] [Abstract][Full Text] [Related]
7. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling. Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717 [TBL] [Abstract][Full Text] [Related]
8. Structural Porous Ceramic for Efficient Daytime Subambient Radiative Cooling. Zhao J; Meng Q; Li Y; Yang Z; Li J ACS Appl Mater Interfaces; 2023 Oct; 15(40):47286-47293. PubMed ID: 37751606 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Superhydrophobic Poly(vinylidene fluoride- Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618 [TBL] [Abstract][Full Text] [Related]
10. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
11. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925 [TBL] [Abstract][Full Text] [Related]
12. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity. Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941 [TBL] [Abstract][Full Text] [Related]
13. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability. Zhang L; Zhan H; Xia Y; Zhang R; Xue J; Yong J; Zhao L; Liu Y; Feng S ACS Appl Mater Interfaces; 2023 Jul; 15(26):31994-32001. PubMed ID: 37347225 [TBL] [Abstract][Full Text] [Related]
14. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301 [TBL] [Abstract][Full Text] [Related]
15. Superhydrophobic stereocomplex-type polylactide/ultra-fine glass fibers aerogel for passive daytime radiative cooling. Liao S; Bai D; Jia Y; Sun J; Liu H; Li L; Xu M Int J Biol Macromol; 2024 Aug; 274(Pt 2):133470. PubMed ID: 38942401 [TBL] [Abstract][Full Text] [Related]
16. Macro-Nanoporous Film with Cauliflower-Shaped Fibers for Highly Efficient Passive Daytime Radiative Cooling. Wei L; Li N; Liu H; Sun C; Chen A; Yang R; Qin Y; Bao H ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39360809 [TBL] [Abstract][Full Text] [Related]
17. Daytime Radiative Cooling Coating Based on the Y Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077 [TBL] [Abstract][Full Text] [Related]
18. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling. Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912 [TBL] [Abstract][Full Text] [Related]
20. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Li X; Xu H; Yang Y; Li F; Ramakrishna S; Yu J; Ji D; Qin X Mater Horiz; 2023 Jul; 10(7):2487-2495. PubMed ID: 37039748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]