These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33950698)

  • 1. Wasting away:
    Cheng AJ; Hawke TJ
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C38-C39. PubMed ID: 33950698
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms of exercise as a preventative measure to muscle wasting.
    Graham ZA; Lavin KM; O'Bryan SM; Thalacker-Mercer AE; Buford TW; Ford KM; Broderick TJ; Bamman MM
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C40-C57. PubMed ID: 33950699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burn-induced hypermetabolism and skeletal muscle dysfunction.
    Knuth CM; Auger C; Jeschke MG
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C58-C71. PubMed ID: 33909503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythropoietin Alleviates Burn-induced Muscle Wasting.
    Wu SH; Lu IC; Tai MH; Chai CY; Kwan AL; Huang SH
    Int J Med Sci; 2020; 17(1):33-44. PubMed ID: 31929736
    [No Abstract]   [Full Text] [Related]  

  • 6. Expression of MuRF1 or MuRF2 is essential for the induction of skeletal muscle atrophy and dysfunction in a murine pulmonary hypertension model.
    Nguyen T; Bowen TS; Augstein A; Schauer A; Gasch A; Linke A; Labeit S; Adams V
    Skelet Muscle; 2020 Apr; 10(1):12. PubMed ID: 32340625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes.
    Castillero E; Alamdari N; Lecker SH; Hasselgren PO
    Metabolism; 2013 Oct; 62(10):1495-502. PubMed ID: 23866982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy.
    Zhu S; Tian Z; Torigoe D; Zhao J; Xie P; Sugizaki T; Sato M; Horiguchi H; Terada K; Kadomatsu T; Miyata K; Oike Y
    PLoS One; 2019; 14(8):e0221366. PubMed ID: 31442231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency?
    Fontes-Oliveira CC; Busquets S; Toledo M; Penna F; Paz Aylwin M; Sirisi S; Silva AP; Orpí M; García A; Sette A; Inês Genovese M; Olivan M; López-Soriano FJ; Argilés JM
    Biochim Biophys Acta; 2013 Mar; 1830(3):2770-8. PubMed ID: 23200745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From animals to humans: evidence linking oxidative stress as a causative factor in muscle atrophy.
    Barker T; Traber MG
    J Physiol; 2007 Sep; 583(Pt 2):421-2. PubMed ID: 17640928
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise.
    Dombrecht D; Van Daele U; Van Asbroeck B; Schieffelers D; Guns PJ; Gebruers N; Meirte J; van Breda E
    J Cachexia Sarcopenia Muscle; 2023 Apr; 14(2):758-770. PubMed ID: 36760077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting.
    Bédard N; Jammoul S; Moore T; Wykes L; Hallauer PL; Hastings KE; Stretch C; Baracos V; Chevalier S; Plourde M; Coyne E; Wing SS
    FASEB J; 2015 Sep; 29(9):3889-98. PubMed ID: 26048142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study.
    Ebhardt HA; Degen S; Tadini V; Schilb A; Johns N; Greig CA; Fearon KCH; Aebersold R; Jacobi C
    J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):567-582. PubMed ID: 28296247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy.
    Sandri M
    Am J Physiol Cell Physiol; 2010 Jun; 298(6):C1291-7. PubMed ID: 20089936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia.
    Song J; Clark A; Wade CE; Wolf SE
    JPEN J Parenter Enteral Nutr; 2021 Nov; 45(8):1627-1633. PubMed ID: 34296448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calpains in muscle wasting.
    Bartoli M; Richard I
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2115-33. PubMed ID: 16125114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Proteolytic Systems of Muscle Wasting.
    Scicchitano BM; Faraldi M; Musarò A
    Recent Adv DNA Gene Seq; 2015; 9(1):26-35. PubMed ID: 26361781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology of peripheral muscle wasting in cardiac cachexia.
    Filippatos GS; Anker SD; Kremastinos DT
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):249-54. PubMed ID: 15809526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.