These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33950865)

  • 1. Hearing Aid Noise Reduction Lowers the Sustained Listening Effort During Continuous Speech in Noise-A Combined Pupillometry and EEG Study.
    Fiedler L; Seifi Ala T; Graversen C; Alickovic E; Lunner T; Wendt D
    Ear Hear; 2021 Nov-Dec 01; 42(6):1590-1601. PubMed ID: 33950865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exploratory Study of EEG Alpha Oscillation and Pupil Dilation in Hearing-Aid Users During Effortful listening to Continuous Speech.
    Seifi Ala T; Graversen C; Wendt D; Alickovic E; Whitmer WM; Lunner T
    PLoS One; 2020; 15(7):e0235782. PubMed ID: 32649733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of SNR, masker type and noise reduction processing on sentence recognition performance and listening effort as indicated by the pupil dilation response.
    Ohlenforst B; Wendt D; Kramer SE; Naylor G; Zekveld AA; Lunner T
    Hear Res; 2018 Aug; 365():90-99. PubMed ID: 29779607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of directional sound processing and listener's motivation on EEG responses to continuous noisy speech: Do normal-hearing and aided hearing-impaired listeners differ?
    Mirkovic B; Debener S; Schmidt J; Jaeger M; Neher T
    Hear Res; 2019 Jun; 377():260-270. PubMed ID: 31003037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss.
    Marsella P; Scorpecci A; Cartocci G; Giannantonio S; Maglione AG; Venuti I; Brizi A; Babiloni F
    Int J Pediatr Otorhinolaryngol; 2017 Aug; 99():1-7. PubMed ID: 28688548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of stimulus-related factors and hearing impairment on listening effort as indicated by pupil dilation.
    Ohlenforst B; Zekveld AA; Lunner T; Wendt D; Naylor G; Wang Y; Versfeld NJ; Kramer SE
    Hear Res; 2017 Aug; 351():68-79. PubMed ID: 28622894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response.
    Zekveld AA; Kramer SE; Festen JM
    Ear Hear; 2011; 32(4):498-510. PubMed ID: 21233711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefit of Higher Maximum Force Output on Listening Effort in Bone-Anchored Hearing System Users: A Pupillometry Study.
    Bianchi F; Wendt D; Wassard C; Maas P; Lunner T; Rosenbom T; Holmberg M
    Ear Hear; 2019; 40(5):1220-1232. PubMed ID: 30807542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a more comprehensive understanding of the impact of masker type and signal-to-noise ratio on the pupillary response while performing a speech-in-noise test.
    Wendt D; Koelewijn T; Książek P; Kramer SE; Lunner T
    Hear Res; 2018 Nov; 369():67-78. PubMed ID: 29858121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Hearing Aid Directional Microphone and Noise Reduction Processing on Listening Effort in Older Adults with Hearing Loss.
    Desjardins JL
    J Am Acad Audiol; 2016 Jan; 27(1):29-41. PubMed ID: 26809324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hearing aid technologies on listening in an automobile.
    Wu YH; Stangl E; Bentler RA; Stanziola RW
    J Am Acad Audiol; 2013 Jun; 24(6):474-85. PubMed ID: 23886425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupil response as an indication of effortful listening: the influence of sentence intelligibility.
    Zekveld AA; Kramer SE; Festen JM
    Ear Hear; 2010 Aug; 31(4):480-90. PubMed ID: 20588118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Noise and Noise Reduction on Processing Effort: A Pupillometry Study.
    Wendt D; Hietkamp RK; Lunner T
    Ear Hear; 2017; 38(6):690-700. PubMed ID: 28640038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Real-World Signal to Noise Ratios and Speech Listening Situations of Older Adults With Mild to Moderate Hearing Loss.
    Wu YH; Stangl E; Chipara O; Hasan SS; Welhaven A; Oleson J
    Ear Hear; 2018; 39(2):293-304. PubMed ID: 29466265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective Assessment of Listening Effort: Coregistration of Pupillometry and EEG.
    Miles K; McMahon C; Boisvert I; Ibrahim R; de Lissa P; Graham P; Lyxell B
    Trends Hear; 2017; 21():2331216517706396. PubMed ID: 28752807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copresence Was Found to Be Related to Some Pupil Measures in Persons With Hearing Loss While They Performed a Speech-in-Noise Task.
    Pielage H; Plain BJ; Saunders GH; Versfeld NJ; Lunner T; Kramer SE; Zekveld AA
    Ear Hear; 2023 Sep-Oct 01; 44(5):1190-1201. PubMed ID: 37012623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Directional Microphone Technology in Hearing Aids on Neural Correlates of Listening and Memory Effort: An Electroencephalographic Study.
    Winneke AH; Schulte M; Vormann M; Latzel M
    Trends Hear; 2020; 24():2331216520948410. PubMed ID: 32833586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG alpha and pupil diameter reflect endogenous auditory attention switching and listening effort.
    Haro S; Rao HM; Quatieri TF; Smalt CJ
    Eur J Neurosci; 2022 Mar; 55(5):1262-1277. PubMed ID: 35098604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Signal to Noise Ratio, T60 , Wide-Dynamic Range Compression Speed, and Digital Noise Reduction in a Virtual Restaurant Setting.
    Ellis GM; Crukley J; Souza PE
    Ear Hear; 2024 May-Jun 01; 45(3):760-774. PubMed ID: 38254265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of hearing aid use on listening effort and mental fatigue associated with sustained speech processing demands.
    Hornsby BW
    Ear Hear; 2013 Sep; 34(5):523-34. PubMed ID: 23426091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.