BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33951125)

  • 1. Machine learning for reparameterization of four-site water models: TIP4P-BG and TIP4P-BGT.
    Ye HF; Wang J; Zheng YG; Zhang HW; Chen Z
    Phys Chem Chem Phys; 2021 May; 23(17):10164-10173. PubMed ID: 33951125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.
    Bauer BA; Warren GL; Patel S
    J Chem Theory Comput; 2009 Feb; 5(2):359-373. PubMed ID: 23133341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrization of 2,2,2-trifluoroethanol based on the generalized AMBER force field provides realistic agreement between experimental and calculated properties of pure liquid as well as water-mixed solutions.
    Vymětal J; Vondrášek J
    J Phys Chem B; 2014 Sep; 118(35):10390-404. PubMed ID: 25110944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Computationally-Determined Properties for Machine Learning Prediction of Self-Diffusion Coefficients in Pure Liquids.
    Allers JP; Priest CW; Greathouse JA; Alam TM
    J Phys Chem B; 2021 Dec; 125(47):12990-13002. PubMed ID: 34793167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW; Swope WC; Pitera JW; Madura JD; Dick TJ; Hura GL; Head-Gordon T
    J Chem Phys; 2004 May; 120(20):9665-78. PubMed ID: 15267980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Mar; 23(11):6914-6928. PubMed ID: 33729222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.
    Wong J; Jahn DA; Giovambattista N
    J Chem Phys; 2015 Aug; 143(7):074501. PubMed ID: 26298139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations.
    Döpke MF; Moultos OA; Hartkamp R
    J Chem Phys; 2020 Jan; 152(2):024501. PubMed ID: 31941316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient and accurate model for water with an improved non-bonded potential.
    Mohebifar M; Rowley CN
    J Chem Phys; 2020 Oct; 153(13):134105. PubMed ID: 33032419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seven-Site Effective Pair Potential for Simulating Liquid Water.
    Zhao CL; Zhao DX; Bei CC; Meng XN; Li S; Yang ZZ
    J Phys Chem B; 2019 May; 123(21):4594-4603. PubMed ID: 31063377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R; Alejandre J
    J Phys Chem B; 2014 Feb; 118(5):1263-72. PubMed ID: 24422512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation.
    Guevara-Carrion G; Vrabec J; Hasse H
    J Chem Phys; 2011 Feb; 134(7):074508. PubMed ID: 21341860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.
    Laury ML; Wang LP; Pande VS; Head-Gordon T; Ponder JW
    J Phys Chem B; 2015 Jul; 119(29):9423-9437. PubMed ID: 25683601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models.
    Sajadi F; Rowley CN
    PeerJ; 2018; 6():e5472. PubMed ID: 30128211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-diffusion and shear viscosity for the TIP4P/Ice water model.
    Baran Ł; Rżysko W; MacDowell LG
    J Chem Phys; 2023 Feb; 158(6):064503. PubMed ID: 36792509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.