BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33951125)

  • 21. Force Field Parametrization from the Hirshfeld Molecular Electronic Density.
    Pérez de la Luz A; Aguilar-Pineda JA; Méndez-Bermúdez JG; Alejandre J
    J Chem Theory Comput; 2018 Nov; 14(11):5949-5958. PubMed ID: 30278120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What ice can teach us about water interactions: a critical comparison of the performance of different water models.
    Vega C; Abascal JL; Conde MM; Aragones JL
    Faraday Discuss; 2009; 141():251-76; discussion 309-46. PubMed ID: 19227361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general purpose model for the condensed phases of water: TIP4P/2005.
    Abascal JL; Vega C
    J Chem Phys; 2005 Dec; 123(23):234505. PubMed ID: 16392929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogeneous nucleation of water in argon. Nucleation rate computation from molecular simulations of TIP4P and TIP4P/2005 water model.
    Dumitrescu LR; Smeulders DM; Dam JA; Gaastra-Nedea SV
    J Chem Phys; 2017 Feb; 146(8):084309. PubMed ID: 28249439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale molecular dynamics simulations of bubble collapse in water: Effects of system size, water model, and nitrogen.
    Chen JL; Prelesnik JL; Liang B; Sun Y; Bhatt M; Knight C; Mahesh K; Siepmann JI
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38095201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PSO-Assisted Development of New Transferable Coarse-Grained Water Models.
    Bejagam KK; Singh S; An Y; Berry C; Deshmukh SA
    J Phys Chem B; 2018 Feb; 122(6):1958-1971. PubMed ID: 29355023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the time required to freeze water.
    Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved Force Field Model for the Deep Eutectic Solvent Ethaline: Reliable Physicochemical Properties.
    Ferreira ESC; Voroshylova IV; Pereira CM; D S Cordeiro MN
    J Phys Chem B; 2016 Sep; 120(38):10124-10137. PubMed ID: 27623239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel.
    Markesteijn AP; Hartkamp R; Luding S; Westerweel J
    J Chem Phys; 2012 Apr; 136(13):134104. PubMed ID: 22482537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of New Transferable Coarse-Grained Models of Hydrocarbons.
    An Y; Bejagam KK; Deshmukh SA
    J Phys Chem B; 2018 Jul; 122(28):7143-7153. PubMed ID: 29928806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of TIP4P/2005 and SPC/Fw Water Models.
    Valle JVL; Mendonça BHS; Barbosa MC; Chacham H; de Moraes EE
    J Phys Chem B; 2024 Feb; 128(4):1091-1097. PubMed ID: 38253517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three- and four-site models for heavy water: SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW.
    Linse JB; Hub JS
    J Chem Phys; 2021 May; 154(19):194501. PubMed ID: 34240910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemometric study of liquid water simulations. I. The parameters of the TIP4P model potential.
    Hernandes MZ; da Silva JB; Longo RL
    J Comput Chem; 2003 Jun; 24(8):973-81. PubMed ID: 12720318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW; Swope WC; Pitera JW
    J Chem Phys; 2005 Nov; 123(19):194504. PubMed ID: 16321097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water.
    Mountain RD
    J Phys Chem B; 2009 Jan; 113(2):482-6. PubMed ID: 19086867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Diffusion factor calculation for TIP4P model of water].
    Zlenko DV
    Biofizika; 2012; 57(2):197-204. PubMed ID: 22594273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.