BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 33951310)

  • 1. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans.
    Deane CS; Willis CRG; Phillips BE; Atherton PJ; Harries LW; Ames RM; Szewczyk NJ; Etheridge T
    J Cachexia Sarcopenia Muscle; 2021 Jun; 12(3):629-645. PubMed ID: 33951310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures.
    Fernandez-Gonzalo R; Tesch PA; Lundberg TR; Alkner BA; Rullman E; Gustafsson T
    FASEB J; 2020 Jun; 34(6):7958-7969. PubMed ID: 32293758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age.
    Deane CS; Phillips BE; Willis CRG; Wilkinson DJ; Smith K; Higashitani N; Williams JP; Szewczyk NJ; Atherton PJ; Higashitani A; Etheridge T
    Geroscience; 2023 Jun; 45(3):1271-1287. PubMed ID: 36161583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans.
    Willis CRG; Gallagher IJ; Wilkinson DJ; Brook MS; Bass JJ; Phillips BE; Smith K; Etheridge T; Stokes T; McGlory C; Gorissen SHM; Szewczyk NJ; Phillips SM; Atherton PJ
    FASEB J; 2021 Sep; 35(9):e21830. PubMed ID: 34342902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of maximal explosive power of lower limbs after 2 weeks of disuse and incomplete recovery after retraining in older adults.
    Rejc E; Floreani M; Taboga P; Botter A; Toniolo L; Cancellara L; Narici M; Šimunič B; Pišot R; Biolo G; Passaro A; Rittweger J; Reggiani C; Lazzer S
    J Physiol; 2018 Feb; 596(4):647-665. PubMed ID: 29266264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise.
    Makhnovskii PA; Bokov RO; Kolpakov FA; Popov DV
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sex divergence in transcriptomic profiles during the onset of hindlimb unloading-induced atrophy.
    Tsitkanou S; Morena da Silva F; Cabrera AR; Schrems ER; Murach KA; Washington TA; Rosa-Caldwell ME; Greene NP
    Am J Physiol Cell Physiol; 2023 Nov; 325(5):C1276-C1293. PubMed ID: 37746697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery.
    Brocca L; Longa E; Cannavino J; Seynnes O; de Vito G; McPhee J; Narici M; Pellegrino MA; Bottinelli R
    J Physiol; 2015 Dec; 593(24):5361-85. PubMed ID: 26369674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.
    Salanova M; Gambara G; Moriggi M; Vasso M; Ungethuem U; Belavý DL; Felsenberg D; Cerretelli P; Gelfi C; Blottner D
    Sci Rep; 2015 Nov; 5():17027. PubMed ID: 26596638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy.
    Lim C; Nunes EA; Currier BS; McLeod JC; Thomas ACQ; Phillips SM
    Med Sci Sports Exerc; 2022 Sep; 54(9):1546-1559. PubMed ID: 35389932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of short-term exercise prehabilitation on skeletal muscle protein synthesis and atrophy during bed rest in older men.
    Smeuninx B; Elhassan YS; Manolopoulos KN; Sapey E; Rushton AB; Edwards SJ; Morgan PT; Philp A; Brook MS; Gharahdaghi N; Smith K; Atherton PJ; Breen L
    J Cachexia Sarcopenia Muscle; 2021 Feb; 12(1):52-69. PubMed ID: 33347733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy.
    Mahmassani ZS; Reidy PT; McKenzie AI; Stubben C; Howard MT; Drummond MJ
    J Appl Physiol (1985); 2019 Apr; 126(4):894-902. PubMed ID: 30605403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans.
    Brook MS; Wilkinson DJ; Mitchell WK; Lund JN; Phillips BE; Szewczyk NJ; Greenhaff PL; Smith K; Atherton PJ
    J Physiol; 2016 Dec; 594(24):7399-7417. PubMed ID: 27654940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quadriceps muscle electromyography activity during physical activities and resistance exercise modes in younger and older adults.
    Marshall RN; Morgan PT; Martinez-Valdes E; Breen L
    Exp Gerontol; 2020 Jul; 136():110965. PubMed ID: 32360986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults.
    Din USU; Brook MS; Selby A; Quinlan J; Boereboom C; Abdulla H; Franchi M; Narici MV; Phillips BE; Williams JW; Rathmacher JA; Wilkinson DJ; Atherton PJ; Smith K
    Clin Nutr; 2019 Oct; 38(5):2071-2078. PubMed ID: 30360984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating exosome-like vesicle and skeletal muscle microRNAs are altered with age and resistance training.
    Xhuti D; Nilsson MI; Manta K; Tarnopolsky MA; Nederveen JP
    J Physiol; 2023 Nov; 601(22):5051-5073. PubMed ID: 36722691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy.
    Trevino MB; Zhang X; Standley RA; Wang M; Han X; Reis FCG; Periasamy M; Yu G; Kelly DP; Goodpaster BH; Vega RB; Coen PM
    Am J Physiol Endocrinol Metab; 2019 Nov; 317(5):E899-E910. PubMed ID: 31479303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy.
    Nicastro H; Zanchi NE; Luz CR; Lancha AH
    Braz J Med Biol Res; 2011 Nov; 44(11):1070-9. PubMed ID: 21952737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.