These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33951866)
1. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation. Zhang W; Che J; Xia L; Wen P; Chen J; Ma B; Wang C J Hazard Mater; 2021 Jun; 412():125232. PubMed ID: 33951866 [TBL] [Abstract][Full Text] [Related]
2. Co-treatment of copper smelting flue dust and arsenic sulfide residue by a pyrometallurgical approach for simultaneous removal and recovery of arsenic. Zhang W; Che J; Wen P; Xia L; Ma B; Chen J; Wang C J Hazard Mater; 2021 Aug; 416():126149. PubMed ID: 34492933 [TBL] [Abstract][Full Text] [Related]
3. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust. Shi T; Xu B; He J; Liu X; Zuo Z Environ Pollut; 2023 Aug; 330():121809. PubMed ID: 37172770 [TBL] [Abstract][Full Text] [Related]
4. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals. Che J; Zhang W; Ma B; Chen Y; Wang L; Wang C Sci Total Environ; 2022 Oct; 843():157063. PubMed ID: 35780900 [TBL] [Abstract][Full Text] [Related]
5. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction. Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678 [TBL] [Abstract][Full Text] [Related]
6. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization. Xing Z; Yang H; Xue X; Jiang P Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688 [TBL] [Abstract][Full Text] [Related]
7. Progressive low-temperature volatilization control: Efficient separation of arsenic and antimony from smelter dust. Che J; Zhang W; Chen Y; Feng S; Zuo Y; Wang C Sci Total Environ; 2024 Feb; 912():169366. PubMed ID: 38104839 [TBL] [Abstract][Full Text] [Related]
8. Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits. Che J; Zhang W; Deen KM; Wang C J Hazard Mater; 2024 Mar; 465():133039. PubMed ID: 38006856 [TBL] [Abstract][Full Text] [Related]
9. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. Jarošíková A; Ettler V; Mihaljevič M; Drahota P; Culka A; Racek M J Environ Manage; 2018 Mar; 209():71-80. PubMed ID: 29276995 [TBL] [Abstract][Full Text] [Related]
10. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. Jarošíková A; Ettler V; Mihaljevič M; Penížek V; Matoušek T; Culka A; Drahota P Environ Pollut; 2018 Jun; 237():83-92. PubMed ID: 29477118 [TBL] [Abstract][Full Text] [Related]
11. Suppressing SO Zhang Q; Chen J; Wu Y; Liu H; Gu B; Hu S; Yang H Environ Sci Pollut Res Int; 2021 Jan; 28(4):4307-4316. PubMed ID: 32936409 [TBL] [Abstract][Full Text] [Related]
12. A novel optimal formula of nickel extraction: arsenic removal from niccolite by controlling arsenic-containing phases. Tang X; He Y Front Chem; 2023; 11():1290831. PubMed ID: 38146428 [No Abstract] [Full Text] [Related]
13. Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation. Tian J; Zhang X; Wang Y; Han H; Sun W; Yue T; Sun J J Environ Manage; 2021 Jun; 287():112348. PubMed ID: 33735678 [TBL] [Abstract][Full Text] [Related]
14. Leaching characteristics and stability assessment of sequestered arsenic in flue dust based glass. Mahandra H; Wu C; Ghahreman A Chemosphere; 2021 Aug; 276():130173. PubMed ID: 33714151 [TBL] [Abstract][Full Text] [Related]
15. Strategies for arsenic pollution control from copper pyrometallurgy based on the study of arsenic sources, emission pathways and speciation characterization in copper flash smelting systems. Zhou H; Liu G; Zhang L; Zhou C; Mian MM; Cheema AI Environ Pollut; 2021 Feb; 270():116203. PubMed ID: 33321434 [TBL] [Abstract][Full Text] [Related]
16. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process. Shibayama A; Takasaki Y; William T; Yamatodani A; Higuchi Y; Sunagawa S; Ono E J Hazard Mater; 2010 Sep; 181(1-3):1016-23. PubMed ID: 20619796 [TBL] [Abstract][Full Text] [Related]
17. A potential industrial waste-waste co-treatment process of utilizing waste SO Wan X; Taskinen P; Shi J; Jokilaakso A J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318 [TBL] [Abstract][Full Text] [Related]
18. Progress of gaseous arsenic removal from flue gas by adsorption: Experimental and theoretical calculations. Yan X; Li Q; Huang X; Li B; Li S; Wang Q J Environ Sci (China); 2024 Feb; 136():470-485. PubMed ID: 37923457 [TBL] [Abstract][Full Text] [Related]
19. Mechanochemical activation on selective leaching of arsenic from copper smelting flue dusts. Guo L; Hu Z; Du Y; Zhang TC; Du D J Hazard Mater; 2021 Jul; 414():125436. PubMed ID: 33676250 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous removal of SO2 and trace As2O3 from flue gas: mechanism, kinetics study, and effect of main gases on arsenic capture. Li Y; Tong H; Zhuo Y; Li Y; Xu X Environ Sci Technol; 2007 Apr; 41(8):2894-900. PubMed ID: 17533855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]