These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33951882)

  • 1. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper.
    Xu Y; Ge Y; Lou Y; Meng J; Shi L; Xia F
    J Hazard Mater; 2021 Jun; 412():125340. PubMed ID: 33951882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resilience of the wheat root-associated microbiome to the disturbance of phenanthrene.
    Su A; Xu Y; Xu M; Ding S; Li M; Zhang Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156487. PubMed ID: 35667431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome.
    Li M; Xu M; Su A; Zhang Y; Niu L; Xu Y
    Front Microbiol; 2022; 13():888086. PubMed ID: 35602076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of Copper Pollution on Microbial Communities in Wheat Root Systems].
    Ge Y; Xu MM; Xu SH; Xu Y
    Huan Jing Ke Xue; 2021 Feb; 42(2):996-1003. PubMed ID: 33742896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.
    Chen C; Lei W; Lu M; Zhang J; Zhang Z; Luo C; Chen Y; Hong Q; Shen Z
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6861-72. PubMed ID: 26670028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation.
    Chen Y; Ding Q; Chao Y; Wei X; Wang S; Qiu R
    Sci Total Environ; 2018 Dec; 644():1591-1601. PubMed ID: 30743871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on
    Wawra A; Friesl-Hanl W; Jäger A; Puschenreiter M; Soja G; Reichenauer T; Watzinger A
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6364-6377. PubMed ID: 29249024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Zn and Cu on the development of phenanthrene catabolism in soil.
    Obuekwe IS; Semple KT
    Environ Monit Assess; 2013 Dec; 185(12):10039-47. PubMed ID: 23793648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.
    Shahsavari E; Adetutu EM; Taha M; Ball AS
    J Environ Manage; 2015 May; 155():171-6. PubMed ID: 25819570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils.
    Li W; Li WB; Xing LJ; Guo SX
    Int J Phytoremediation; 2023; 25(2):240-251. PubMed ID: 35549569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil.
    Thomas F; Corre E; Cébron A
    ISME J; 2019 Jul; 13(7):1814-1830. PubMed ID: 30872807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.
    Sharaff M; Kamat S; Archana G
    Ecotoxicol Environ Saf; 2017 Apr; 138():113-121. PubMed ID: 28038338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity, function and assembly of the Trifolium repens L. root-associated microbiome under lead stress.
    Wang L; Gong L; Gan D; Li X; Yao J; Wang L; Qu J; Cong J; Zhang Y
    J Hazard Mater; 2022 Sep; 438():129510. PubMed ID: 35816797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.
    Lin W; Guo C; Zhang H; Liang X; Wei Y; Lu G; Dang Z
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1325-38. PubMed ID: 26683200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra.
    Cao Y; Ma C; Chen H; Chen G; White JC; Xing B
    Sci Total Environ; 2020 Feb; 704():135350. PubMed ID: 31822423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with
    Cennerazzo J; de Junet A; Audinot JN; Leyval C
    Chemosphere; 2017 Feb; 168():1619-1627. PubMed ID: 27939509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization.
    Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B
    Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.