BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33952467)

  • 1. Prediction of Chemosensitivity in Multiple Primary Cancer Patients Using Machine Learning.
    Zhang X; Jang MI; Zheng Z; Gao A; Lin Z; Kim KY
    Anticancer Res; 2021 May; 41(5):2419-2429. PubMed ID: 33952467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.
    Huang C; Mezencev R; McDonald JF; Vannberg F
    PLoS One; 2017; 12(10):e0186906. PubMed ID: 29073279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of cancer classification by machine learning generates an enriched list of candidate drug targets and biomarkers.
    Ramroach S; Joshi A; John M
    Mol Omics; 2020 Apr; 16(2):113-125. PubMed ID: 32095794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features.
    Zhang X; Wang J; Li J; Chen W; Liu C
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting cancer drug response by proteomic profiling.
    Ma Y; Ding Z; Qian Y; Shi X; Castranova V; Harner EJ; Guo L
    Clin Cancer Res; 2006 Aug; 12(15):4583-9. PubMed ID: 16899605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study.
    Kweon S; Lee JH; Lee Y; Park YR
    J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging TCGA gene expression data to build predictive models for cancer drug response.
    Clayton EA; Pujol TA; McDonald JF; Qiu P
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):364. PubMed ID: 32998700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets.
    Rahimi A; Gönen M
    Bioinformatics; 2018 Jul; 34(13):i412-i421. PubMed ID: 29949993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PrognosiT: Pathway/gene set-based tumour volume prediction using multiple kernel learning.
    Bektaş AB; Gönen M
    BMC Bioinformatics; 2021 Nov; 22(1):537. PubMed ID: 34727887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma.
    Alkhadar H; Macluskey M; White S; Ellis I; Gardner A
    J Oral Pathol Med; 2021 Apr; 50(4):378-384. PubMed ID: 33220109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression cancer classification using modified K-Nearest Neighbors technique.
    Ayyad SM; Saleh AI; Labib LM
    Biosystems; 2019 Feb; 176():41-51. PubMed ID: 30611843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis.
    Brindha GR; Rishiikeshwer BS; Santhi B; Nakendraprasath K; Manikandan R; Gandomi AH
    Comput Methods Programs Biomed; 2022 Sep; 224():107027. PubMed ID: 35914385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels.
    Podolsky MD; Barchuk AA; Kuznetcov VI; Gusarova NF; Gaidukov VS; Tarakanov SA
    Asian Pac J Cancer Prev; 2016; 17(2):835-8. PubMed ID: 26925688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials.
    Schperberg AV; Boichard A; Tsigelny IF; Richard SB; Kurzrock R
    Int J Cancer; 2020 Nov; 147(9):2537-2549. PubMed ID: 32745254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning-based gene signature of response to the novel alkylating agent LP-184 distinguishes its potential tumor indications.
    Kathad U; Kulkarni A; McDermott JR; Wegner J; Carr P; Biyani N; Modali R; Richard JP; Sharma P; Bhatia K
    BMC Bioinformatics; 2021 Mar; 22(1):102. PubMed ID: 33653269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic approach towards personalized anticancer drug therapy.
    Midorikawa Y; Tsuji S; Takayama T; Aburatani H
    Pharmacogenomics; 2012 Jan; 13(2):191-9. PubMed ID: 22256868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.