These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33952673)

  • 21. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias.
    Legeai-Mallet L; Benoist-Lasselin C; Munnich A; Bonaventure J
    Bone; 2004 Jan; 34(1):26-36. PubMed ID: 14751560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statins do not inhibit the FGFR signaling in chondrocytes.
    Fafilek B; Hampl M; Ricankova N; Vesela I; Balek L; Kunova Bosakova M; Gudernova I; Varecha M; Buchtova M; Krejci P
    Osteoarthritis Cartilage; 2017 Sep; 25(9):1522-1530. PubMed ID: 28583899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice.
    Garofalo S; Kliger-Spatz M; Cooke JL; Wolstin O; Lunstrum GP; Moshkovitz SM; Horton WA; Yayon A
    J Bone Miner Res; 1999 Nov; 14(11):1909-15. PubMed ID: 10571691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed bone age due to a dual effect of FGFR3 mutation in Achondroplasia.
    Pannier S; Mugniery E; Jonquoy A; Benoist-Lasselin C; Odent T; Jais JP; Munnich A; Legeai-Mallet L
    Bone; 2010 Nov; 47(5):905-15. PubMed ID: 20673820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achondroplasia: Development, pathogenesis, and therapy.
    Ornitz DM; Legeai-Mallet L
    Dev Dyn; 2017 Apr; 246(4):291-309. PubMed ID: 27987249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphatase inhibition by LB-100 enhances BMN-111 stimulation of bone growth.
    Shuhaibar LC; Kaci N; Egbert JR; Horville T; Loisay L; Vigone G; Uliasz TF; Dambroise E; Swingle MR; Honkanen RE; Biosse Duplan M; Jaffe LA; Legeai-Mallet L
    JCI Insight; 2021 May; 6(9):. PubMed ID: 33986191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias.
    Foldynova-Trantirkova S; Wilcox WR; Krejci P
    Hum Mutat; 2012 Jan; 33(1):29-41. PubMed ID: 22045636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The paradox of FGFR3 signaling in skeletal dysplasia: why chondrocytes growth arrest while other cells over proliferate.
    Krejci P
    Mutat Res Rev Mutat Res; 2014; 759():40-8. PubMed ID: 24295726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice.
    Iwata T; Li CL; Deng CX; Francomano CA
    Hum Mol Genet; 2001 Jun; 10(12):1255-64. PubMed ID: 11406607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.
    Thompson LM; Raffioni S; Wasmuth JJ; Bradshaw RA
    Mol Cell Biol; 1997 Jul; 17(7):4169-77. PubMed ID: 9199352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knock-in human FGFR3 achondroplasia mutation as a mouse model for human skeletal dysplasia.
    Lee YC; Song IW; Pai YJ; Chen SD; Chen YT
    Sci Rep; 2017 Feb; 7():43220. PubMed ID: 28230213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia.
    Lorget F; Kaci N; Peng J; Benoist-Lasselin C; Mugniery E; Oppeneer T; Wendt DJ; Bell SM; Bullens S; Bunting S; Tsuruda LS; O'Neill CA; Di Rocco F; Munnich A; Legeai-Mallet L
    Am J Hum Genet; 2012 Dec; 91(6):1108-14. PubMed ID: 23200862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors.
    Li C; Chen L; Iwata T; Kitagawa M; Fu XY; Deng CX
    Hum Mol Genet; 1999 Jan; 8(1):35-44. PubMed ID: 9887329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains.
    Wang Q; Green RP; Zhao G; Ornitz DM
    Development; 2001 Oct; 128(19):3867-76. PubMed ID: 11585811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circulatory CNP Rescues Craniofacial Hypoplasia in Achondroplasia.
    Yamanaka S; Nakao K; Koyama N; Isobe Y; Ueda Y; Kanai Y; Kondo E; Fujii T; Miura M; Yasoda A; Nakao K; Bessho K
    J Dent Res; 2017 Dec; 96(13):1526-1534. PubMed ID: 28644737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia.
    Kimura T; Ozaki T; Fujita K; Yamashita A; Morioka M; Ozono K; Tsumaki N
    Osteoarthritis Cartilage; 2018 Nov; 26(11):1551-1561. PubMed ID: 30086379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias.
    Zheng C; Lin X; Xu X; Wang C; Zhou J; Gao B; Fan J; Lu W; Hu Y; Jie Q; Luo Z; Yang L
    EBioMedicine; 2019 Feb; 40():695-709. PubMed ID: 30685387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.
    Sarabipour S; Hristova K
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1436-42. PubMed ID: 27040652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Molecular basis of achondroplasia, hypochondroplasia, and thanatophoric dysplasia].
    Moskalewski S; Hyc A; Osiecka-Iwan A; Strzelczyk P
    Chir Narzadow Ruchu Ortop Pol; 2000; 65(3):327-33. PubMed ID: 11057021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic inactivation of ERK1 and ERK2 in chondrocytes promotes bone growth and enlarges the spinal canal.
    Sebastian A; Matsushita T; Kawanami A; Mackem S; Landreth GE; Murakami S
    J Orthop Res; 2011 Mar; 29(3):375-9. PubMed ID: 20922792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.