These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33953408)

  • 1. The Paris Climate Agreement and future sea-level rise from Antarctica.
    DeConto RM; Pollard D; Alley RB; Velicogna I; Gasson E; Gomez N; Sadai S; Condron A; Gilford DM; Ashe EL; Kopp RE; Li D; Dutton A
    Nature; 2021 May; 593(7857):83-89. PubMed ID: 33953408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hysteresis of the Antarctic Ice Sheet.
    Garbe J; Albrecht T; Levermann A; Donges JF; Winkelmann R
    Nature; 2020 Sep; 585(7826):538-544. PubMed ID: 32968257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of the East Antarctic Ice Sheet to past and future climate change.
    Stokes CR; Abram NJ; Bentley MJ; Edwards TL; England MH; Foppert A; Jamieson SSR; Jones RS; King MA; Lenaerts JTM; Medley B; Miles BWJ; Paxman GJG; Ritz C; van de Flierdt T; Whitehouse PL
    Nature; 2022 Aug; 608(7922):275-286. PubMed ID: 35948707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projected land ice contributions to twenty-first-century sea level rise.
    Edwards TL; Nowicki S; Marzeion B; Hock R; Goelzer H; Seroussi H; Jourdain NC; Slater DA; Turner FE; Smith CJ; McKenna CM; Simon E; Abe-Ouchi A; Gregory JM; Larour E; Lipscomb WH; Payne AJ; Shepherd A; Agosta C; Alexander P; Albrecht T; Anderson B; Asay-Davis X; Aschwanden A; Barthel A; Bliss A; Calov R; Chambers C; Champollion N; Choi Y; Cullather R; Cuzzone J; Dumas C; Felikson D; Fettweis X; Fujita K; Galton-Fenzi BK; Gladstone R; Golledge NR; Greve R; Hattermann T; Hoffman MJ; Humbert A; Huss M; Huybrechts P; Immerzeel W; Kleiner T; Kraaijenbrink P; Le Clec'h S; Lee V; Leguy GR; Little CM; Lowry DP; Malles JH; Martin DF; Maussion F; Morlighem M; O'Neill JF; Nias I; Pattyn F; Pelle T; Price SF; Quiquet A; Radić V; Reese R; Rounce DR; Rückamp M; Sakai A; Shafer C; Schlegel NJ; Shannon S; Smith RS; Straneo F; Sun S; Tarasov L; Trusel LD; Van Breedam J; van de Wal R; van den Broeke M; Winkelmann R; Zekollari H; Zhao C; Zhang T; Zwinger T
    Nature; 2021 May; 593(7857):74-82. PubMed ID: 33953415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Antarctica to past and future sea-level rise.
    DeConto RM; Pollard D
    Nature; 2016 Mar; 531(7596):591-7. PubMed ID: 27029274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum.
    Yokoyama Y; Esat TM; Thompson WG; Thomas AL; Webster JM; Miyairi Y; Sawada C; Aze T; Matsuzaki H; Okuno J; Fallon S; Braga JC; Humblet M; Iryu Y; Potts DC; Fujita K; Suzuki A; Kan H
    Nature; 2018 Jul; 559(7715):603-607. PubMed ID: 30046076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uncertain future of the Antarctic Ice Sheet.
    Pattyn F; Morlighem M
    Science; 2020 Mar; 367(6484):1331-1335. PubMed ID: 32193321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss.
    Gomez N; Pollard D; Holland D
    Nat Commun; 2015 Nov; 6():8798. PubMed ID: 26554381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years.
    Shakun JD; Corbett LB; Bierman PR; Underwood K; Rizzo DM; Zimmerman SR; Caffee MW; Naish T; Golledge NR; Hay CC
    Nature; 2018 Jun; 558(7709):284-287. PubMed ID: 29899483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antarctic ice-sheet loss driven by basal melting of ice shelves.
    Pritchard HD; Ligtenberg SR; Fricker HA; Vaughan DG; van den Broeke MR; Padman L
    Nature; 2012 Apr; 484(7395):502-5. PubMed ID: 22538614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica.
    Turney CSM; Fogwill CJ; Golledge NR; McKay NP; van Sebille E; Jones RT; Etheridge D; Rubino M; Thornton DP; Davies SM; Ramsey CB; Thomas ZA; Bird MI; Munksgaard NC; Kohno M; Woodward J; Winter K; Weyrich LS; Rootes CM; Millman H; Albert PG; Rivera A; van Ommen T; Curran M; Moy A; Rahmstorf S; Kawamura K; Hillenbrand CD; Weber ME; Manning CJ; Young J; Cooper A
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):3996-4006. PubMed ID: 32047039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current.
    Hellmer HH; Kauker F; Timmermann R; Determann J; Rae J
    Nature; 2012 May; 485(7397):225-8. PubMed ID: 22575964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.
    Kingslake J; Scherer RP; Albrecht T; Coenen J; Powell RD; Reese R; Stansell ND; Tulaczyk S; Wearing MG; Whitehouse PL
    Nature; 2018 Jun; 558(7710):430-434. PubMed ID: 29899456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.
    Winkelmann R; Levermann A; Ridgwell A; Caldeira K
    Sci Adv; 2015 Sep; 1(8):e1500589. PubMed ID: 26601273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints on global mean sea level during Pliocene warmth.
    Dumitru OA; Austermann J; Polyak VJ; Fornós JJ; Asmerom Y; Ginés J; Ginés A; Onac BP
    Nature; 2019 Oct; 574(7777):233-236. PubMed ID: 31471591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.