These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33954036)

  • 1.
    Plum F; Labonte D
    PeerJ; 2021; 9():e11155. PubMed ID: 33954036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry.
    Medina JJ; Maley JM; Sannapareddy S; Medina NN; Gilman CM; McCormack JE
    PLoS One; 2020; 15(8):e0236417. PubMed ID: 32790700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Pathology Specimen Modeling Using "Structure-From-Motion" Photogrammetry: A Powerful New Tool for Surgical Pathology.
    Turchini J; Buckland ME; Gill AJ; Battye S
    Arch Pathol Lab Med; 2018 Nov; 142(11):1415-1420. PubMed ID: 29846102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital curation and online resources: digital scanning of surgical tools at the royal college of physicians and surgeons of Glasgow for an open university learning resource.
    Earley K; Livingstone D; Rea PM
    J Vis Commun Med; 2017 Jan; 40(1):2-12. PubMed ID: 28434385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging.
    Ströbel B; Schmelzle S; Blüthgen N; Heethoff M
    Zookeys; 2018; (759):1-27. PubMed ID: 29853774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
    Valente G; Crimi G; Vanella N; Schileo E; Taddei F
    Comput Methods Programs Biomed; 2017 Dec; 152():85-92. PubMed ID: 29054263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR.
    Trochta J; Krůček M; Vrška T; Král K
    PLoS One; 2017; 12(5):e0176871. PubMed ID: 28472167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The segmentation and visualization of a neuron in the housefly's visual system.
    Anderson JR; Barrett SF; Wilcox MJ
    Biomed Sci Instrum; 2005; 41():235-40. PubMed ID: 15850111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual Anatomy Museum: Facilitating Public Engagement Through an Interactive Application.
    Jędrzejewski Z; Loranger B; Clancy JA
    Adv Exp Med Biol; 2020; 1262():1-18. PubMed ID: 32613577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing an Herbarium Digitisation Workflow with Built-In Image Quality Management.
    Nieva de la Hidalga A; Rosin PL; Sun X; Bogaerts A; De Meeter N; De Smedt S; Strack van Schijndel M; Van Wambeke P; Groom Q
    Biodivers Data J; 2020; 8():e47051. PubMed ID: 32269476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital three-dimensional visualization of intrabony periodontal defects for regenerative surgical treatment planning.
    Palkovics D; Mangano FG; Nagy K; Windisch P
    BMC Oral Health; 2020 Dec; 20(1):351. PubMed ID: 33261592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Democratising "Microscopi": a 3D printed automated XYZT fluorescence imaging system for teaching, outreach and fieldwork.
    Wincott M; Jefferson A; Dobbie IM; Booth MJ; Davis I; Parton RM
    Wellcome Open Res; 2021; 6():63. PubMed ID: 33977151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumentino: An Open-Source Software for Scientific Instruments.
    Koenka IJ; Sáiz J; Hauser PC
    Chimia (Aarau); 2015; 69(4):172-5. PubMed ID: 26668933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorph segmentation representation for medical image computing.
    Pinter C; Lasso A; Fichtinger G
    Comput Methods Programs Biomed; 2019 Apr; 171():19-26. PubMed ID: 30902247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging.
    Gabr RE; Tefera GB; Allen WJ; Pednekar AS; Narayana PA
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):449-457. PubMed ID: 27796790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional surface scanning methods in osteology: A topographical and geometric morphometric comparison.
    Waltenberger L; Rebay-Salisbury K; Mitteroecker P
    Am J Phys Anthropol; 2021 Apr; 174(4):846-858. PubMed ID: 33410519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lightweight rapid application development framework for biomedical image analysis.
    Chandra SS; Dowling JA; Engstrom C; Xia Y; Paproki A; Neubert A; Rivest-Hénault D; Salvado O; Crozier S; Fripp J
    Comput Methods Programs Biomed; 2018 Oct; 164():193-205. PubMed ID: 30195427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple 3D images from fossil and recent micromaterial using light microscopy.
    Haug JT; Haug C; Maas A; Fayers SR; Trewin NH; Waloszek D
    J Microsc; 2009 Jan; 233(1):93-101. PubMed ID: 19196416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.
    Nielsen JD; Madsen KH; Puonti O; Siebner HR; Bauer C; Madsen CG; Saturnino GB; Thielscher A
    Neuroimage; 2018 Jul; 174():587-598. PubMed ID: 29518567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.