These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3395513)

  • 1. Clinical assay of the human erythrocyte lactate transporter. I. Principles, procedure, and validation.
    Fishbein WN; Foellmer JW; Davis JI; Fishbein TM; Armbrustmacher P
    Biochem Med Metab Biol; 1988 Jun; 39(3):338-50. PubMed ID: 3395513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical assay of the human erythrocyte lactate transporter. II. Analysis and display of normal human data.
    Fishbein WN; Davis JI; Foellmer JW; Casey MR
    Biochem Med Metab Biol; 1988 Jun; 39(3):351-9. PubMed ID: 3395514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and partial purification of the erythrocyte L-lactate transporter.
    Poole RC; Halestrap AP
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):855-62. PubMed ID: 1590773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rabbit erythrocyte membrane protein associated with L-lactate transport.
    Jennings ML; Adams-Lackey M
    J Biol Chem; 1982 Nov; 257(21):12866-71. PubMed ID: 7130184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes.
    Poole RC; Halestrap AP
    Biochem J; 1988 Sep; 254(2):385-90. PubMed ID: 3178766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase.
    Fannin FF; Evans JO; Gibbs EM; Diedrich DF
    Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-hydroxysulfosuccinimido active esters and the L-(+)-lactate transport protein in rabbit erythrocytes.
    Donovan JA; Jennings ML
    Biochemistry; 1986 Apr; 25(7):1538-45. PubMed ID: 3707891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate and inhibitor specificity of the lactate carrier of human neutrophils.
    Simchowitz L; Vogt SK
    J Membr Biol; 1993 Jan; 131(1):23-34. PubMed ID: 8433351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid.
    Donovan JA; Jennings ML
    Biochemistry; 1985 Jan; 24(3):561-4. PubMed ID: 2986679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF.
    Carpenter L; Halestrap AP
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):751-60. PubMed ID: 7818477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes.
    de Bruijne AW; Vreeburg H; van Steveninck J
    Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-mediated chloride-phosphate and lactate-lactate exchange in cytoskeleton-free vesicles budded from rabbit erythrocytes.
    Donovan JA
    Biochim Biophys Acta; 1985 Jun; 816(1):68-76. PubMed ID: 4005240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
    Manning Fox JE; Meredith D; Halestrap AP
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):285-93. PubMed ID: 11101640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition and labelling of the erythrocyte lactate transporter by stilbene disulphonates.
    Poole RC; Halestrap AP
    Biochem Soc Trans; 1990 Dec; 18(6):1245-6. PubMed ID: 2088893
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS).
    Poole RC; Cranmer SL; Holdup DW; Halestrap AP
    Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells.
    Alda JO; Garay R
    Am J Physiol; 1990 Oct; 259(4 Pt 1):C570-6. PubMed ID: 2221038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.