These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 33955137)

  • 21. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.
    Xiong P; Zhu J; Zhang L; Wang X
    Nanoscale Horiz; 2016 Sep; 1(5):340-374. PubMed ID: 32260626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress on hollow array architectures and their applications in electrochemical energy storage.
    Zhu C; Wang H; Guan C
    Nanoscale Horiz; 2020 Jul; 5(8):1188-1199. PubMed ID: 32661545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications.
    Cai ZX; Wang ZL; Kim J; Yamauchi Y
    Adv Mater; 2019 Mar; 31(11):e1804903. PubMed ID: 30637804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multishelled Transition Metal-Based Microspheres: Synthesis and Applications for Batteries and Supercapacitors.
    Liu Y; Li X; Shen W; Dai Y; Kou W; Zheng W; Jiang X; He G
    Small; 2019 Aug; 15(32):e1804737. PubMed ID: 30756519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-organic framework (MOF) composites as promising materials for energy storage applications.
    Peng Y; Xu J; Xu J; Ma J; Bai Y; Cao S; Zhang S; Pang H
    Adv Colloid Interface Sci; 2022 Sep; 307():102732. PubMed ID: 35870249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes.
    Yu SH; Quan B; Jin A; Lee KS; Kang SH; Kang K; Piao Y; Sung YE
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25725-32. PubMed ID: 26536816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni-Co-S Nanoparticles for Supercapacitors and Lithium Ion Batteries.
    Yi M; Zhang C; Cao C; Xu C; Sa B; Cai D; Zhan H
    Inorg Chem; 2019 Mar; 58(6):3916-3924. PubMed ID: 30816702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aluminum and lithium sulfur batteries: a review of recent progress and future directions.
    Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
    Wang L; Hu X
    Chem Asian J; 2018 Jun; 13(12):1518-1529. PubMed ID: 29667345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The design and synthesis of spinel one-dimensional multi-shelled nanostructures for Li-ion batteries.
    Li H; Wang Y; Zhang J; Zhu L; Shi J; Chen B; Hu Y; Zhang H; Deng X; Peng Y
    Nanoscale; 2022 May; 14(20):7692-7701. PubMed ID: 35551370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current Status and Future Prospects of Metal-Sulfur Batteries.
    Chung SH; Manthiram A
    Adv Mater; 2019 Jul; 31(27):e1901125. PubMed ID: 31081272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications.
    Sun H; Li J; Liang W; Gong X; Jing A; Yang W; Liu H; Ren S
    Small Methods; 2024 Aug; 8(8):e2301335. PubMed ID: 38037763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries.
    Yu L; Zhou X; Lu L; Wu X; Wang F
    ChemSusChem; 2020 Oct; 13(20):5361-5407. PubMed ID: 32776650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructured Mo-based electrode materials for electrochemical energy storage.
    Hu X; Zhang W; Liu X; Mei Y; Huang Y
    Chem Soc Rev; 2015 Apr; 44(8):2376-404. PubMed ID: 25688809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing high-energy lithium-sulfur batteries.
    Seh ZW; Sun Y; Zhang Q; Cui Y
    Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.