These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33955446)

  • 1. Intelligent acoustofluidics enabled mini-bioreactors for human brain organoids.
    Cai H; Ao Z; Wu Z; Song S; Mackie K; Guo F
    Lab Chip; 2021 Jun; 21(11):2194-2205. PubMed ID: 33955446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping cell spheroids and organoids using digital acoustofluidics.
    Cai H; Wu Z; Ao Z; Nunez A; Chen B; Jiang L; Bondesson M; Guo F
    Biofabrication; 2020 Jul; 12(3):035025. PubMed ID: 32438350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable fusion of human brain organoids using acoustofluidics.
    Ao Z; Cai H; Wu Z; Ott J; Wang H; Mackie K; Guo F
    Lab Chip; 2021 Feb; 21(4):688-699. PubMed ID: 33514983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids.
    Ma S; Zhao H; Galan EA
    Adv Biol (Weinh); 2021 Aug; 5(8):e2100535. PubMed ID: 33984193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidic platforms for particle manipulation.
    Novotny J; Lenshof A; Laurell T
    Electrophoresis; 2022 Apr; 43(7-8):804-818. PubMed ID: 34719049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Acoustofluidics in Bioanalytical Chemistry.
    Li P; Huang TJ
    Anal Chem; 2019 Jan; 91(1):757-767. PubMed ID: 30561981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain Organoid Generation from Induced Pluripotent Stem Cells in Home-Made Mini Bioreactors.
    Eremeev A; Belikova L; Ruchko E; Volovikov E; Zubkova O; Emelin A; Deev R; Lebedeva O; Bogomazova A; Lagarkova M
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 34958079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid measurement of the local pressure amplitude in microchannel acoustophoresis using motile cells.
    Kim M; Barnkob R; Meacham JM
    J Acoust Soc Am; 2021 Aug; 150(2):1565. PubMed ID: 34470271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open source acoustofluidics.
    Bachman H; Fu H; Huang PH; Tian Z; Embry-Seckler J; Rufo J; Xie Z; Hartman JH; Zhao S; Yang S; Meyer JN; Huang TJ
    Lab Chip; 2019 Jul; 19(14):2404-2414. PubMed ID: 31240285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging.
    Charles S; Jackson-Holmes E; Sun G; Zhou Y; Siciliano B; Niu W; Han H; Nikitina A; Kemp ML; Wen Z; Lu H
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enhanced tilted-angle acoustic tweezer for mechanical phenotyping of cancer cells.
    Wang H; Boardman J; Zhang X; Sun C; Cai M; Wei J; Dong Z; Feng M; Liang D; Hu S; Qian Y; Dong S; Fu Y; Torun H; Clayton A; Wu Z; Xie Z; Yang X
    Anal Chim Acta; 2023 May; 1255():341120. PubMed ID: 37032048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motile cells as probes for characterizing acoustofluidic devices.
    Kim M; Bayly PV; Meacham JM
    Lab Chip; 2021 Feb; 21(3):521-533. PubMed ID: 33507201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreactor Technologies for Enhanced Organoid Culture.
    Licata JP; Schwab KH; Har-El YE; Gerstenhaber JA; Lelkes PI
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of acoustofluidic separation of bioparticles.
    Hossein F; Angeli P
    Biophys Rev; 2023 Dec; 15(6):2005-2025. PubMed ID: 38192342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital acoustofluidics enables contactless and programmable liquid handling.
    Zhang SP; Lata J; Chen C; Mai J; Guo F; Tian Z; Ren L; Mao Z; Huang PH; Li P; Yang S; Huang TJ
    Nat Commun; 2018 Jul; 9(1):2928. PubMed ID: 30050088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of self-assembled three-dimensional architecture in reusable acoustofluidic device.
    Nguyen TD; Tran VT; Du H
    Electrophoresis; 2021 Nov; 42(21-22):2375-2382. PubMed ID: 33765330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.