These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies. Suellen C; Freitas RG; Loos PF; Jacquemin D J Chem Theory Comput; 2019 Aug; 15(8):4581-4590. PubMed ID: 31265781 [TBL] [Abstract][Full Text] [Related]
5. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments. Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950 [TBL] [Abstract][Full Text] [Related]
6. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems. Loos PF; Jacquemin D J Phys Chem A; 2021 Dec; 125(47):10174-10188. PubMed ID: 34792354 [TBL] [Abstract][Full Text] [Related]
7. Excess and excited-state dipole moments of real-life dyes: a comparison between wave-function, BSE/ Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D Phys Chem Chem Phys; 2023 Nov; 25(43):29993-30004. PubMed ID: 37905396 [TBL] [Abstract][Full Text] [Related]
8. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. Loos PF; Scemama A; Blondel A; Garniron Y; Caffarel M; Jacquemin D J Chem Theory Comput; 2018 Aug; 14(8):4360-4379. PubMed ID: 29966098 [TBL] [Abstract][Full Text] [Related]
9. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. Loos PF; Lipparini F; Boggio-Pasqua M; Scemama A; Jacquemin D J Chem Theory Comput; 2020 Mar; 16(3):1711-1741. PubMed ID: 31986042 [TBL] [Abstract][Full Text] [Related]
10. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods. Momeni MR; Brown A J Chem Theory Comput; 2015 Jun; 11(6):2619-32. PubMed ID: 26575559 [TBL] [Abstract][Full Text] [Related]
11. A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes. Loos PF; Jacquemin D J Comput Chem; 2024 Aug; 45(21):1791-1805. PubMed ID: 38661240 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples. Bednarska J; Zaleśny R; Bartkowiak W; Ośmiałowski B; Medved' M; Jacquemin D J Chem Theory Comput; 2017 Sep; 13(9):4347-4356. PubMed ID: 28777575 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking Correlated Methods for Frequency-Dependent Polarizabilities: Aromatic Molecules with the CC3, CCSD, CC2, SOPPA, SOPPA(CC2), and SOPPA(CCSD) Methods. Jørgensen MW; Faber R; Ligabue A; Sauer SPA J Chem Theory Comput; 2020 May; 16(5):3006-3018. PubMed ID: 32302474 [TBL] [Abstract][Full Text] [Related]
14. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. Shao Y; Mei Y; Sundholm D; Kaila VRI J Chem Theory Comput; 2020 Jan; 16(1):587-600. PubMed ID: 31815476 [TBL] [Abstract][Full Text] [Related]
15. Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3. Sauer SP; Schreiber M; Silva-Junior MR; Thiel W J Chem Theory Comput; 2009 Mar; 5(3):555-64. PubMed ID: 26610222 [TBL] [Abstract][Full Text] [Related]
16. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD. Jacquemin D; Duchemin I; Blase X J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726 [TBL] [Abstract][Full Text] [Related]
17. 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds. Jacquemin D; Duchemin I; Blase X J Chem Theory Comput; 2015 Nov; 11(11):5340-59. PubMed ID: 26574326 [TBL] [Abstract][Full Text] [Related]
18. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. Seeger ZL; Izgorodina EI J Chem Theory Comput; 2020 Oct; 16(10):6735-6753. PubMed ID: 32865998 [TBL] [Abstract][Full Text] [Related]
19. What is the Key for Accurate Absorption and Emission Calculations, Energy or Geometry? Jacquemin D J Chem Theory Comput; 2018 Mar; 14(3):1534-1543. PubMed ID: 29365256 [TBL] [Abstract][Full Text] [Related]
20. Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries. Loos PF; Jacquemin D J Chem Theory Comput; 2019 Apr; 15(4):2481-2491. PubMed ID: 30802404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]