These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3395629)

  • 1. GTP hydrolysis by tubulin occurs with water oxygen incorporation into inorganic phosphate.
    Osei AA; Everett GW; Himes RH
    Biochim Biophys Acta; 1988 Jul; 955(2):269-71. PubMed ID: 3395629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparently irreversible GTP hydrolysis attends tubulin self-assembly.
    Angelastro JM; Purich DL
    Eur J Biochem; 1990 Jul; 191(2):507-11. PubMed ID: 2384097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly.
    Melki R; Carlier MF; Pantaloni D
    Biochemistry; 1990 Sep; 29(38):8921-32. PubMed ID: 1980210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 18Oxygen incorporation into inorganic phosphate in the reaction catalyzed by N5,10-methenyltetrahydrofolate synthetase.
    Kounga K; Vander Velde DG; Himes RH
    FEBS Lett; 1995 May; 364(2):215-7. PubMed ID: 7750574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics.
    Dougherty CA; Himes RH; Wilson L; Farrell KW
    Biochemistry; 1998 Aug; 37(31):10861-5. PubMed ID: 9692978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
    Caplow M; Fee L
    Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly.
    MacNeal RK; Purich DL
    J Biol Chem; 1978 Jul; 253(13):4683-7. PubMed ID: 659441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay.
    Melki R; Fievez S; Carlier MF
    Biochemistry; 1996 Sep; 35(37):12038-45. PubMed ID: 8810908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule dynamic instability does not result from stabilization of microtubules by tubulin-GDP-Pi subunits.
    Caplow M; Shanks J
    Biochemistry; 1998 Sep; 37(37):12994-3002. PubMed ID: 9737880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the carboxy terminal region of beta tubulin on microtubule dynamics through its interaction with the GTP phosphate binding region.
    Padilla R; López Otin C; Serrano L; Avila J
    FEBS Lett; 1993 Jul; 325(3):173-6. PubMed ID: 8319803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of the tubulin nonexchangeable GTP site in bovine neurotubule assembly.
    MacNeal RK; Purich DL
    J Biol Chem; 1977 Jul; 252(13):4440-2. PubMed ID: 194881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed elongation model for microtubule GTP hydrolysis.
    Caplow M; Reid R
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3267-71. PubMed ID: 3858823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between chromium GTP and tubulin. Stereochemistry of GTP binding, GTP hydrolysis, and microtubule stabilization.
    Carlier MF; Didry D; Valentin-Ranc C
    J Biol Chem; 1991 Jul; 266(19):12361-8. PubMed ID: 2061314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerning the location of the GTP hydrolysis site on microtubules.
    Caplow M; Shanks J; Brylawski BP
    Can J Biochem Cell Biol; 1985 Jun; 63(6):422-9. PubMed ID: 2994860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nucleotides in tubulin polymerization: effect of guanosine 5'-methylene diphosphonate.
    Sandoval IV; Jameson JL; Niedel J; MacDonald E; Cuatrecasas P
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3178-82. PubMed ID: 277919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation.
    Carlier MF; Didry D; Pantaloni D
    Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of oxygen-18 exchange between inorganic phosphate and water catalyzed by myosin subfragment 1, using the 18O shift in 31P NMR.
    Webb MR; McDonald GG; Trentham DR
    J Biol Chem; 1978 May; 253(9):2908-11. PubMed ID: 641045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dephosphorylation of tubulin-bound guanosine triphosphate during microtubule assembly.
    Kobayashi T
    J Biochem; 1975 Jun; 77(6):1193-7. PubMed ID: 1225903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laulimalide and paclitaxel: a comparison of their effects on tubulin assembly and their synergistic action when present simultaneously.
    Gapud EJ; Bai R; Ghosh AK; Hamel E
    Mol Pharmacol; 2004 Jul; 66(1):113-21. PubMed ID: 15213302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.