These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33956424)

  • 1. DNA Gold Nanoparticle Motors Demonstrate Processive Motion with Bursts of Speed Up to 50 nm Per Second.
    Bazrafshan A; Kyriazi ME; Holt BA; Deng W; Piranej S; Su H; Hu Y; El-Sagheer AH; Brown T; Kwong GA; Kanaras AG; Salaita K
    ACS Nano; 2021 May; 15(5):8427-8438. PubMed ID: 33956424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed DNA-based rolling motors powered by RNase H.
    Yehl K; Mugler A; Vivek S; Liu Y; Zhang Y; Fan M; Weeks ER; Salaita K
    Nat Nanotechnol; 2016 Feb; 11(2):184-90. PubMed ID: 26619152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Turbo-Charged" DNA Motors with Optimized Sequence Enable Single-Molecule Nucleic Acid Sensing.
    Zhang L; Piranej S; Namazi A; Narum S; Salaita K
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202316851. PubMed ID: 38214887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds.
    Bazrafshan A; Meyer TA; Su H; Brockman JM; Blanchard AT; Piranej S; Duan Y; Ke Y; Salaita K
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9514-9521. PubMed ID: 32017312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis.
    Blanchard AT; Bazrafshan AS; Yi J; Eisman JT; Yehl KM; Bian T; Mugler A; Salaita K
    Nano Lett; 2019 Oct; 19(10):6977-6986. PubMed ID: 31402671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opto-Thermocapillary Nanomotors on Solid Substrates.
    Li J; Kollipara PS; Liu Y; Yao K; Liu Y; Zheng Y
    ACS Nano; 2022 Jun; 16(6):8820-8826. PubMed ID: 35594375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-State-Dependent Free Energy Profile from Single-Molecule Trajectories of Biomolecular Motors: Application to Processive Chitinase.
    Okazaki KI; Nakamura A; Iino R
    J Phys Chem B; 2020 Jul; 124(30):6475-6487. PubMed ID: 32628485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle.
    Korosec CS; Unksov IN; Surendiran P; Lyttleton R; Curmi PMG; Angstmann CN; Eichhorn R; Linke H; Forde NR
    Nat Commun; 2024 Feb; 15(1):1511. PubMed ID: 38396042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic DNA motor that transports nanoparticles along carbon nanotubes.
    Cha TG; Pan J; Chen H; Salgado J; Li X; Mao C; Choi JH
    Nat Nanotechnol; 2014 Jan; 9(1):39-43. PubMed ID: 24317284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE; Tsukanov R; Glick Y; Berger Y; Liber M; Avrahami D; Gerber D; Nir E
    ACS Nano; 2017 Apr; 11(4):4002-4008. PubMed ID: 28402651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesive Dynamics Simulations of Highly Polyvalent DNA Motors.
    Blanchard AT; Piranej S; Pan V; Salaita K
    J Phys Chem B; 2022 Oct; 126(39):7495-7509. PubMed ID: 36137248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency.
    Liu M; Cheng J; Tee SR; Sreelatha S; Loh IY; Wang Z
    ACS Nano; 2016 Jun; 10(6):5882-90. PubMed ID: 27294366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-phase DNA-origami stepper mechanism based on multi-leg interactions.
    Kilwing L; Lill P; Nathwani B; Singh JKD; Liedl T; Shih WM
    Biophys J; 2022 Dec; 121(24):4860-4866. PubMed ID: 36045576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian ratchet models of molecular motors.
    Ait-Haddou R; Herzog W
    Cell Biochem Biophys; 2003; 38(2):191-214. PubMed ID: 12777714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.
    Ahmed S; Wang W; Mair LO; Fraleigh RD; Li S; Castro LA; Hoyos M; Huang TJ; Mallouk TE
    Langmuir; 2013 Dec; 29(52):16113-8. PubMed ID: 24345038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors.
    Gao W; Dong R; Thamphiwatana S; Li J; Gao W; Zhang L; Wang J
    ACS Nano; 2015 Jan; 9(1):117-23. PubMed ID: 25549040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local heat activation of single myosins based on optical trapping of gold nanoparticles.
    Iwaki M; Iwane AH; Ikezaki K; Yanagida T
    Nano Lett; 2015 Apr; 15(4):2456-61. PubMed ID: 25736894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry in motion: tiny synthetic motors.
    Colberg PH; Reigh SY; Robertson B; Kapral R
    Acc Chem Res; 2014 Dec; 47(12):3504-11. PubMed ID: 25357202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable Target-Initiated DNAzyme Walker Walking along a Spatially Isolated and Highly Hybridizable Substrate Track on a Nanoparticle Surface.
    Yang K; Wang H; Ma N; Zeng M; Luo H; He D
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44546-44553. PubMed ID: 30489066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.