These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 33956440)

  • 1. Architectural Design for Enhanced C
    Xiao C; Zhang J
    ACS Nano; 2021 May; 15(5):7975-8000. PubMed ID: 33956440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Surface and Interface Structures of Copper-Based Catalysts for Enhanced Electrochemical Reduction of CO
    Hua Y; Zhu C; Zhang L; Dong F
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38592003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu-Based Materials for Enhanced C
    Rhimi B; Zhou M; Yan Z; Cai X; Jiang Z
    Nanomicro Lett; 2024 Jan; 16(1):64. PubMed ID: 38175306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical CO2 Reduction to Multicarbon Products on Non-Copper Based Catalysts.
    Huang J; Liu Q; Huang J; Xu M; Lai W; Gu ZY
    ChemSusChem; 2024 Jul; ():e202401173. PubMed ID: 38982867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst Design for Electrochemical Reduction of CO
    Xue Y; Guo Y; Cui H; Zhou Z
    Small Methods; 2021 Oct; 5(10):e2100736. PubMed ID: 34927943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloying strategies for tuning product selectivity during electrochemical CO
    Mosali VSS; Bond AM; Zhang J
    Nanoscale; 2022 Nov; 14(42):15560-15585. PubMed ID: 36254597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO
    Li M; Ma Y; Chen J; Lawrence R; Luo W; Sacchi M; Jiang W; Yang J
    Angew Chem Int Ed Engl; 2021 May; 60(20):11487-11493. PubMed ID: 33683786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH
    Lee JH; Jang W; Lee H; Oh D; Noh WY; Kim KY; Kim J; Kim H; An K; Kim MG; Kwon Y; Lee JS; Cho S
    Nano Lett; 2024 Jun; ():. PubMed ID: 38924488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO
    Rahmati F; Sabouhanian N; Lipkowski J; Chen A
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu Based Dilute Alloys for Tuning the C
    Crandall BS; Qi Z; Foucher AC; Weitzner SE; Akhade SA; Liu X; Kashi AR; Buckley AK; Ma S; Stach EA; Varley JB; Jiao F; Biener J
    Small; 2024 Jul; ():e2401656. PubMed ID: 38994827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO
    Wang J; Deng D; Wu Q; Liu M; Wang Y; Jiang J; Zheng X; Zheng H; Bai Y; Chen Y; Xiong X; Lei Y
    ACS Nano; 2023 Oct; 17(19):18688-18705. PubMed ID: 37725796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies in catalysts and electrolyzer design for electrochemical CO
    Fan L; Xia C; Yang F; Wang J; Wang H; Lu Y
    Sci Adv; 2020 Feb; 6(8):eaay3111. PubMed ID: 32128404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design strategy of a Cu-based catalyst for optimizing the performance in the electrochemical CO
    Ni Z; Wang P; Quan F; Guo R; Liu C; Liu X; Mu W; Lei X; Li Q
    Nanoscale; 2022 Nov; 14(44):16376-16393. PubMed ID: 36305266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Reduction of CO
    Zhang S; Zhao S; Qu D; Liu X; Wu Y; Chen Y; Huang W
    Small; 2021 Sep; 17(37):e2102293. PubMed ID: 34342137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive strain in Cu catalysts: Enhancing generation of C
    Fan Q; Yan P; Liu F; Xu Z; Liang P; Cao X; Ye C; Liu M; Zhao L; Ren S; Miao H; Zhang X; Yang Z; Ding X; Yang J; Kong C; Wu Y
    Sci Bull (Beijing); 2024 Jun; ():. PubMed ID: 38987090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Selective CO
    Liu C; Wang M; Ye J; Liu L; Li L; Li Y; Huang X
    Nano Lett; 2023 Feb; 23(4):1474-1480. PubMed ID: 36779931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering.
    Qu J; Cao X; Gao L; Li J; Li L; Xie Y; Zhao Y; Zhang J; Wu M; Liu H
    Nanomicro Lett; 2023 Jul; 15(1):178. PubMed ID: 37433948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to Modulate the Copper Oxidation State Toward Selective C
    Jun M; Kundu J; Kim DH; Kim M; Kim D; Lee K; Choi SI
    Adv Mater; 2024 May; 36(21):e2313028. PubMed ID: 38346313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals.
    Wu J; Sharifi T; Gao Y; Zhang T; Ajayan PM
    Adv Mater; 2019 Mar; 31(13):e1804257. PubMed ID: 30589109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.