BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33957041)

  • 1. Disaccharide Residues are Required for Native Antifreeze Glycoprotein Activity.
    Sun Y; Giubertoni G; Bakker HJ; Liu J; Wagner M; Ng DYW; Devries AL; Meister K
    Biomacromolecules; 2021 Jun; 22(6):2595-2603. PubMed ID: 33957041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Antifreeze' glycoproteins from polar fish.
    Harding MM; Anderberg PI; Haymet AD
    Eur J Biochem; 2003 Apr; 270(7):1381-92. PubMed ID: 12653993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structurally diverse disaccharide analogs of antifreeze glycoproteins and their ability to inhibit ice recrystallization.
    Balcerzak AK; Ferreira SS; Trant JF; Ben RN
    Bioorg Med Chem Lett; 2012 Feb; 22(4):1719-21. PubMed ID: 22264482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the role of key structural motifs in antifreeze glycoproteins.
    Pandey P; Mallajosyula SS
    Phys Chem Chem Phys; 2019 Feb; 21(7):3903-3917. PubMed ID: 30702099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.
    Krishnamoorthy AN; Holm C; Smiatek J
    J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the Mechanism of Irreversible Binding of Antifreeze Glycoproteins to Ice.
    Zhang W; Liu H; Fu H; Shao X; Cai W
    J Phys Chem B; 2022 Dec; 126(50):10637-10645. PubMed ID: 36513495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption to ice of fish antifreeze glycopeptides 7 and 8.
    Knight CA; Driggers E; DeVries AL
    Biophys J; 1993 Jan; 64(1):252-9. PubMed ID: 8431545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ensemble of Conformations of Antifreeze Glycoproteins (AFGP8): A Study Using Nuclear Magnetic Resonance Spectroscopy.
    Her C; Yeh Y; Krishnan VV
    Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31213033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration.
    Tsuda S; Yamauchi A; Khan NMU; Arai T; Mahatabuddin S; Miura A; Kondo H
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32182859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Antifreeze Activity through Water: Latent Functions of the Sugars of Antifreeze Glycoprotein Revealed by Total Chemical Synthesis.
    Okamoto R; Orii R; Shibata H; Maki Y; Tsuda S; Kajihara Y
    Chemistry; 2023 Apr; 29(21):e202203553. PubMed ID: 36722034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifreeze Glycoproteins Bind Irreversibly to Ice.
    Meister K; DeVries AL; Bakker HJ; Drori R
    J Am Chem Soc; 2018 Aug; 140(30):9365-9368. PubMed ID: 30028137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze Glycoproteins Bind Reversibly to Ice via Hydrophobic Groups.
    Mochizuki K; Molinero V
    J Am Chem Soc; 2018 Apr; 140(14):4803-4811. PubMed ID: 29392937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.
    Zhang W; Laursen RA
    J Biol Chem; 1998 Dec; 273(52):34806-12. PubMed ID: 9857006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.
    Budke C; Heggemann C; Koch M; Sewald N; Koop T
    J Phys Chem B; 2009 Mar; 113(9):2865-73. PubMed ID: 19708116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile solid-phase synthesis of an antifreeze glycoprotein.
    Tseng PH; Jiaang WT; Chang MY; Chen ST
    Chemistry; 2001 Feb; 7(3):585-90. PubMed ID: 11261655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
    Urbańczyk M; Góra J; Latajka R; Sewald N
    Amino Acids; 2017 Feb; 49(2):209-222. PubMed ID: 27913993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the Solution Structure of Antifreeze Glycoproteins Using Two-Dimensional Infrared Spectroscopy.
    Giubertoni G; Meister K; DeVries AL; Bakker HJ
    J Phys Chem Lett; 2019 Feb; 10(3):352-357. PubMed ID: 30615465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides.
    Adam MK; Jarrett-Wilkins C; Beards M; Staykov E; MacFarlane LR; Bell TDM; Matthews JM; Manners I; Faul CFJ; Moens PDJ; Ben RN; Wilkinson BL
    Chemistry; 2018 Jun; 24(31):7834-7839. PubMed ID: 29644728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
    Nagel L; Budke C; Erdmann RS; Dreyer A; Wennemers H; Koop T; Sewald N
    Chemistry; 2012 Oct; 18(40):12783-93. PubMed ID: 22930587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.