These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33957070)

  • 1. Anger management: pSI has a say in it.
    Zha X; Xu XH
    Neuron; 2021 May; 109(9):1420-1422. PubMed ID: 33957070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A substantia innominata-midbrain circuit controls a general aggressive response.
    Zhu Z; Ma Q; Miao L; Yang H; Pan L; Li K; Zeng LH; Zhang X; Wu J; Hao S; Lin S; Ma X; Mai W; Feng X; Hao Y; Sun L; Duan S; Yu YQ
    Neuron; 2021 May; 109(9):1540-1553.e9. PubMed ID: 33740417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors.
    Deng H; Xiao X; Wang Z
    J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse.
    Yang Q; Liu S; Yin M; Yin Y; Zhou G; Zhou J
    Dev Neurobiol; 2015 Nov; 75(11):1282-94. PubMed ID: 25762221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1992; 90(2):307-18. PubMed ID: 1397145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain.
    Li JN; Sheets PL
    J Physiol; 2018 Dec; 596(24):6289-6305. PubMed ID: 30281797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential distribution of parvalbumin- and calbindin-D28K-immunoreactive neurons in the rat periaqueductal gray matter and their colocalization with enzymes producing nitric oxide.
    Barbaresi P; Mensà E; Lariccia V; Pugnaloni A; Amoroso S; Fabri M
    Brain Res Bull; 2013 Oct; 99():48-62. PubMed ID: 24107244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of the pathway connecting the substantia nigra, the periaqueductal gray matter and the retrotrapezoid nucleus in breathing control in a rat model of Parkinson's disease.
    Lima JC; Oliveira LM; Botelho MT; Moreira TS; Takakura AC
    Exp Neurol; 2018 Apr; 302():46-56. PubMed ID: 29305892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychophysiology of anger and violent behavior.
    Scarpa A; Raine A
    Psychiatr Clin North Am; 1997 Jun; 20(2):375-94. PubMed ID: 9196920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia sensitive neurons in the caudal hypothalamus project to the periaqueductal gray.
    Ryan JW; Waldrop TG
    Respir Physiol; 1995 Jun; 100(3):185-94. PubMed ID: 7481107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin.
    Flores JA; Galan-Rodriguez B; Ramiro-Fuentes S; Fernandez-Espejo E
    Neuropsychopharmacology; 2006 Jul; 31(7):1475-88. PubMed ID: 16292327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat.
    Weiner S; Shaikh MB; Shaikh AB; Siegel A
    Physiol Behav; 1991 Jun; 49(6):1099-105. PubMed ID: 1654570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous distribution of neurotensin-like immunoreactive neurons and fibers in the midbrain periaqueductal gray of the rat.
    Shipley MT; McLean JH; Behbehani MM
    J Neurosci; 1987 Jul; 7(7):2025-34. PubMed ID: 3302124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG).
    Manchanda SK; Poddar A; Saha S; Bhatia SC; Kumar VM; Nayar U
    Neurobiology (Bp); 1995; 3(3-4):405-17. PubMed ID: 8696308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiating role of interleukin 2 (IL-2) receptors in the midbrain periaqueductal gray (PAG) upon defensive rage behavior in the cat: role of neurokinin NK(1) receptors.
    Bhatt S; Siegel A
    Behav Brain Res; 2006 Feb; 167(2):251-60. PubMed ID: 16242788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA-mediated regulation of feline aggression elicited from midbrain periaqueductal gray.
    Shaikh MB; Siegel A
    Brain Res; 1990 Jan; 507(1):51-6. PubMed ID: 2302579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons.
    Farkas E; Jansen AS; Loewy AD
    Brain Res; 1998 May; 792(2):179-92. PubMed ID: 9593884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kainic acid lesions of the cat's midbrain periaqueductal grey region and emotional-defensive response evoked by carbachol injection to the same loci.
    Gołebiewski H; Eckersdorf B
    Behav Brain Res; 1989 Oct; 35(1):1-7. PubMed ID: 2803540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain.
    Cheriyan J; Sheets PL
    J Neurosci; 2018 May; 38(20):4829-4839. PubMed ID: 29695413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamina I-periaqueductal gray (PAG) projections represent only a limited part of the total spinal and caudal medullary input to the PAG in the cat.
    Mouton LJ; Klop E; Holstege G
    Brain Res Bull; 2001 Jan; 54(2):167-74. PubMed ID: 11275406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.