BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33957107)

  • 1. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury.
    Vasudevan D; Liu YC; Barrios JP; Wheeler MK; Douglass AD; Dorsky RI
    Exp Neurol; 2021 Aug; 342():113737. PubMed ID: 33957107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.
    Benthall KN; Hough RA; McClellan AD
    J Neurophysiol; 2017 Jan; 117(1):215-229. PubMed ID: 27760818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent plasticity of spinal locomotion: implications for sensory processing.
    Edgerton VR; Roy RR
    Exerc Sport Sci Rev; 2009 Oct; 37(4):171-8. PubMed ID: 19955866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury.
    Sławińska U; Miazga K; Jordan LM
    Acta Neurobiol Exp (Wars); 2014; 74(2):172-87. PubMed ID: 24993627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse.
    Garcia-Ramirez DL; Ha NT; Bibu S; Stachowski NJ; Dougherty KJ
    J Neurosci; 2021 Jul; 41(27):5833-5848. PubMed ID: 34006587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of functional recovery in a larval zebrafish model of spinal cord injury.
    Hossainian D; Shao E; Jiao B; Ilin VA; Parris RS; Zhou Y; Bai Q; Burton EA
    J Neurosci Res; 2022 Nov; 100(11):2044-2054. PubMed ID: 35986577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations.
    Chen B; Li Y; Yu B; Zhang Z; Brommer B; Williams PR; Liu Y; Hegarty SV; Zhou S; Zhu J; Guo H; Lu Y; Zhang Y; Gu X; He Z
    Cell; 2018 Jul; 174(3):521-535.e13. PubMed ID: 30033363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Swim Endurance and Swim Behavior in Adult Zebrafish.
    Burris B; Jensen N; Mokalled MH
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
    Zhou L; McAdow AR; Yamada H; Burris B; Klatt Shaw D; Oonk K; Poss KD; Mokalled MH
    Development; 2023 May; 150(10):. PubMed ID: 37213080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells.
    Zhu P; Zheng P; Kong X; Wang S; Cao M; Zhao C
    EMBO Rep; 2023 Jan; 24(1):e54984. PubMed ID: 36408859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Roles of Specific Subclasses of Premotor Interneurons in Spinal Cord Function Recovery after Traumatic Spinal Cord Injury in Adults.
    Dominguez-Bajo A; Clotman F
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face.
    Fong AJ; Roy RR; Ichiyama RM; Lavrov I; Courtine G; Gerasimenko Y; Tai YC; Burdick J; Edgerton VR
    Prog Brain Res; 2009; 175():393-418. PubMed ID: 19660669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic training and spinal cord plasticity.
    Edgerton VR; Roy RR
    Brain Res Bull; 2009 Jan; 78(1):4-12. PubMed ID: 19010399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it.
    Onifer SM; Smith GM; Fouad K
    Neurotherapeutics; 2011 Apr; 8(2):283-93. PubMed ID: 21384221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate gray matter interneurons in the lumbar spinal cord play a critical and necessary role in coordinated locomotion.
    Kuehn N; Schwarz A; Beretta CA; Schwarte Y; Schmitt F; Motsch M; Weidner N; Puttagunta R
    PLoS One; 2023; 18(10):e0291740. PubMed ID: 37906544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury.
    Darian-Smith C
    Neuroscientist; 2009 Apr; 15(2):149-65. PubMed ID: 19307422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling.
    Shevtsova NA; Li EZ; Singh S; Dougherty KJ; Rybak IA
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2X7 regulates ependymo-radial glial cell proliferation in adult Danio rerio following spinal cord injury.
    Stefanova EE; Dychiao JVT; Chinn MC; Borhani M; Scott AL
    Biol Open; 2024 Apr; 13(4):. PubMed ID: 38526172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer.
    Cigliola V; Shoffner A; Lee N; Ou J; Gonzalez TJ; Hoque J; Becker CJ; Han Y; Shen G; Faw TD; Abd-El-Barr MM; Varghese S; Asokan A; Poss KD
    Nat Commun; 2023 Aug; 14(1):4857. PubMed ID: 37567873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal Cord Injury and Assays for Regeneration.
    Burris B; Mokalled MH
    Methods Mol Biol; 2024; 2707():215-222. PubMed ID: 37668915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.