BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33957147)

  • 1. Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein.
    van den Noort M; de Boer M; Poolman B
    J Mol Biol; 2021 Jul; 433(15):167036. PubMed ID: 33957147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations that alter the equilibrium between open and closed conformations of Escherichia coli maltose-binding protein impede its ability to enhance the solubility of passenger proteins.
    Nallamsetty S; Waugh DS
    Biochem Biophys Res Commun; 2007 Dec; 364(3):639-44. PubMed ID: 17964542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins.
    Mukherjee S; Griffin DH; Horn JR; Rizk SS; Nocula-Lugowska M; Malmqvist M; Kim SS; Kossiakoff AA
    J Biol Chem; 2018 Feb; 293(8):2815-2828. PubMed ID: 29321208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE.
    Jacso T; Grote M; Daus ML; Schmieder P; Keller S; Schneider E; Reif B
    Biochemistry; 2009 Mar; 48(10):2216-25. PubMed ID: 19159328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein.
    Bermejo GA; Strub MP; Ho C; Tjandra N
    Biochemistry; 2010 Mar; 49(9):1893-902. PubMed ID: 20141110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins.
    Gam J; Ha JS; Kim H; Lee DH; Lee J; Lee SG
    Biosens Bioelectron; 2015 Oct; 72():37-43. PubMed ID: 25957075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and aggregation of export-defective mutants of the maltose-binding protein.
    Betton JM; Phichith D; Hunke S
    Res Microbiol; 2002 Sep; 153(7):399-404. PubMed ID: 12405345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a defective folding protein.
    Saul FA; Mourez M; Vulliez-Le Normand B; Sassoon N; Bentley GA; Betton JM
    Protein Sci; 2003 Mar; 12(3):577-85. PubMed ID: 12592028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants.
    Telmer PG; Shilton BH
    J Biol Chem; 2003 Sep; 278(36):34555-67. PubMed ID: 12794084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of protein-ligand binding based on the molecular-mechanics energy model.
    Boas FE; Harbury PB
    J Mol Biol; 2008 Jul; 380(2):415-24. PubMed ID: 18514737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete alanine scanning of the Escherichia coli RbsB ribose binding protein reveals residues important for chemoreceptor signaling and periplasmic abundance.
    Reimer A; Maffenbeier V; Dubey M; Sentchilo V; Tavares D; Gil MH; Beggah S; van der Meer JR
    Sci Rep; 2017 Aug; 7(1):8245. PubMed ID: 28811596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of ligand binding affinity by exploitation of conformational coupling.
    Marvin JS; Hellinga HW
    Nat Struct Biol; 2001 Sep; 8(9):795-8. PubMed ID: 11524684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes.
    Layton CJ; Hellinga HW
    Biochemistry; 2010 Dec; 49(51):10831-41. PubMed ID: 21050007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle.
    Daus ML; Berendt S; Wuttge S; Schneider E
    Mol Microbiol; 2007 Dec; 66(5):1107-22. PubMed ID: 17961142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins.
    Prajapati RS; Indu S; Varadarajan R
    Biochemistry; 2007 Sep; 46(36):10339-52. PubMed ID: 17696409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.
    Bao H; Dalal K; Wang V; Rouiller I; Duong F
    Biochim Biophys Acta; 2013 Aug; 1828(8):1723-30. PubMed ID: 23562402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF.
    Kandt C; Xu Z; Tieleman DP
    Biochemistry; 2006 Nov; 45(44):13284-92. PubMed ID: 17073449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor.
    Okada S; Ota K; Ito T
    Protein Sci; 2009 Dec; 18(12):2518-27. PubMed ID: 19827096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.