These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33957198)
1. Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. Fathi F; Saberi-Riseh R; Khodaygan P Int J Biol Macromol; 2021 Jul; 183():627-634. PubMed ID: 33957198 [TBL] [Abstract][Full Text] [Related]
2. Biocontrol of Alsudani AA; Raheem Lateef Al-Awsi G Pak J Biol Sci; 2020 Jan; 23(11):1456-1461. PubMed ID: 33274875 [TBL] [Abstract][Full Text] [Related]
3. Survival, root colonisation and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. Russo A; Basaglia M; Tola E; Casella S J Ind Microbiol Biotechnol; 2001 Dec; 27(6):337-42. PubMed ID: 11773997 [TBL] [Abstract][Full Text] [Related]
4. Microencapsulation of a Fathi F; Saberi Riseh R; Khodaygan P; Hosseini S; Skorik YA Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883770 [TBL] [Abstract][Full Text] [Related]
5. Investigating the formulation of alginate- gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Pour MM; Saberi-Riseh R; Mohammadinejad R; Hosseini A Int J Biol Macromol; 2019 Jul; 133():603-613. PubMed ID: 31004642 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Grosch R; Faltin F; Lottmann J; Kofoet A; Berg G Can J Microbiol; 2005 Apr; 51(4):345-53. PubMed ID: 15980897 [TBL] [Abstract][Full Text] [Related]
7. Detoxification of oxalic acid by pseudomonas fluorescens strain pfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Nagarajkumar M; Jayaraj J; Muthukrishnan S; Bhaskaran R; Velazhahan R Microbiol Res; 2005; 160(3):291-8. PubMed ID: 16035241 [TBL] [Abstract][Full Text] [Related]
8. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
9. Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease. Wiwattanapatapee R; Chumthong A; Pengnoo A; Kanjanamaneesathian M World J Microbiol Biotechnol; 2013 Aug; 29(8):1487-97. PubMed ID: 23508397 [TBL] [Abstract][Full Text] [Related]
10. A novel antifungal Pseudomonas fluorescens isolated from potato soils in Greenland. Michelsen CF; Stougaard P Curr Microbiol; 2011 Apr; 62(4):1185-92. PubMed ID: 21165740 [TBL] [Abstract][Full Text] [Related]
11. Genome Mining and Evaluation of the Biocontrol Potential of Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091 [TBL] [Abstract][Full Text] [Related]
13. Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. Huang X; Gänzle M; Zhang H; Zhao M; Fang Y; Nishinari K J Sci Food Agric; 2021 Jan; 101(2):726-734. PubMed ID: 32706117 [TBL] [Abstract][Full Text] [Related]
14. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus). Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):745-8. PubMed ID: 20222559 [TBL] [Abstract][Full Text] [Related]
15. Properties and stability of Lactiplantibacillus plantarum AB6-25 and Saccharomyces boulardii T8-3C single and double-layered microcapsules containing Na-alginate and/or demineralized whey powder with lactobionic acid. Gedik O; Karahan AG Int J Biol Macromol; 2024 Jun; 271(Pt 1):132406. PubMed ID: 38754658 [TBL] [Abstract][Full Text] [Related]
16. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. Scherwinski K; Grosch R; Berg G FEMS Microbiol Ecol; 2008 Apr; 64(1):106-16. PubMed ID: 18248441 [TBL] [Abstract][Full Text] [Related]
17. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Downing KJ; Thomson JA Can J Microbiol; 2000 Apr; 46(4):363-9. PubMed ID: 10779873 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere. Arseneault T; Goyer C; Filion M Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Ben Khedher S; Kilani-Feki O; Dammak M; Jabnoun-Khiareddine H; Daami-Remadi M; Tounsi S C R Biol; 2015 Dec; 338(12):784-92. PubMed ID: 26563555 [TBL] [Abstract][Full Text] [Related]
20. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Saber WI; Ghoneem KM; Al-Askar AA; Rashad YM; Ali AA; Rashad EM Acta Biol Hung; 2015 Dec; 66(4):436-48. PubMed ID: 26616375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]