BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33957224)

  • 1. Prolonged activity of exenatide: Detailed comparison of Site-specific linear polyglycerol- and poly(ethylene glycol)-conjugates.
    Tully M; Wedepohl S; Kutifa D; Weise C; Licha K; Schirner M; Haag R
    Eur J Pharm Biopharm; 2021 Jul; 164():105-113. PubMed ID: 33957224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of exenatide-loaded linear poly(ethylene glycol)-brush poly(l-lysine) block copolymer: potential implications on diabetic nephropathy.
    Tong F
    Int J Nanomedicine; 2017; 12():4663-4678. PubMed ID: 28721043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mono-PEGylates of exenatide in branched and dimeric structures can improve in vivo stability and hypoglycemic bioactivity.
    Thi Nguyen NT; Jung S; Lee SH; Bae ON; Lee EK
    J Biotechnol; 2019 Dec; 306():89-96. PubMed ID: 31580912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low molecular weight (1 kDa) polyethylene glycol conjugation markedly enhances the hypoglycemic effects of intranasally administered exendin-4 in type 2 diabetic db/db mice.
    Kim TH; Park CW; Kim HY; Chi MH; Lee SK; Song YM; Jiang HH; Lim SM; Youn YS; Lee KC
    Biol Pharm Bull; 2012; 35(7):1076-83. PubMed ID: 22791155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4.
    Tully M; Hauptstein N; Licha K; Meinel L; Lühmann T; Haag R
    J Pharm Sci; 2022 Jun; 111(6):1642-1651. PubMed ID: 34728175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity.
    Gong N; Ma AN; Zhang LJ; Luo XS; Zhang YH; Xu M; Wang YX
    Br J Pharmacol; 2011 May; 163(2):399-412. PubMed ID: 21244372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyglycerol for Half-Life Extension of Proteins-Alternative to PEGylation?
    Tully M; Dimde M; Weise C; Pouyan P; Licha K; Schirner M; Haag R
    Biomacromolecules; 2021 Apr; 22(4):1406-1416. PubMed ID: 33792290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel.
    Yu L; Li K; Liu X; Chen C; Bao Y; Ci T; Chen Q; Ding J
    J Pharm Sci; 2013 Nov; 102(11):4140-9. PubMed ID: 24114868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution.
    Imran ul-haq M; Lai BF; Chapanian R; Kizhakkedathu JN
    Biomaterials; 2012 Dec; 33(35):9135-47. PubMed ID: 23020861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal site-specific PEGylated Exendin-4 analog: A long-acting glucagon like Peptide-1 receptor agonist, on glycemic control and beta cell function in diabetic db/db mice.
    Tang D; Tian H; Wu J; Cheng J; Luo C; Sai W; Song X; Gao X; Yao W
    J Pharmacol Sci; 2018 Sep; 138(1):23-30. PubMed ID: 30309736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes.
    He Z; Hu Y; Gui Z; Zhou Y; Nie T; Zhu J; Liu Z; Chen K; Liu L; Leong KW; Cao P; Chen Y; Mao HQ
    J Control Release; 2019 May; 301():119-128. PubMed ID: 30894322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological activity of AC3174, a peptide analog of exendin-4.
    Hargrove DM; Kendall ES; Reynolds JM; Lwin AN; Herich JP; Smith PA; Gedulin BR; Flanagan SD; Jodka CM; Hoyt JA; McCowen KM; Parkes DG; Anderson CM
    Regul Pept; 2007 Jun; 141(1-3):113-9. PubMed ID: 17292977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel lipid side chain modified exenatide analogs emerged prolonged glucoregulatory activity and potential body weight management properties.
    Li C; Cai X; Dai Y; Liu C; Bi X; Zhou J; Li Q; Sun L; Huang W; Hou Z; Qian H
    Bioorg Med Chem; 2019 Oct; 27(20):115070. PubMed ID: 31471103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus.
    Oh KS; Kim JY; Yoon BD; Lee M; Kim H; Kim M; Seo JH; Yuk SH
    Eur J Pharm Biopharm; 2014 Nov; 88(3):664-9. PubMed ID: 25152212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice.
    Youn YS; Jeon JE; Chae SY; Lee S; Lee KC
    Diabetes Obes Metab; 2008 Apr; 10(4):343-6. PubMed ID: 18034839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic drug-peptide-polymer conjugates based on poly(ethylene glycol) and hyperbranched polyglycerol for epidermal growth factor receptor targeting: the effect of conjugate aggregation on in vitro activity.
    Pethő L; Kasza G; Lajkó E; Láng O; Kőhidai L; Iván B; Mező G
    Soft Matter; 2020 Jun; 16(24):5759-5769. PubMed ID: 32530018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of therapeutic potentials of site-specific PEGylated glucagon-like peptide-1 isomers as a type 2 anti-diabetic treatment: Insulinotropic activity, glucose-stabilizing capability, and proteolytic stability.
    Youn YS; Chae SY; Lee S; Jeon JE; Shin HG; Lee KC
    Biochem Pharmacol; 2007 Jan; 73(1):84-93. PubMed ID: 17054919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of lactic acid acylated exenatide and its long-acting preparation.
    Wang A; Yan X; Liang R; Wang L; Chu L; Sun K; Fu F
    Pharm Dev Technol; 2019 Dec; 24(10):1229-1235. PubMed ID: 31368418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes.
    Zhang Y; Zhong Y; Hu M; Xiang N; Fu Y; Gong T; Zhang Z
    Drug Dev Ind Pharm; 2016; 42(7):1042-9. PubMed ID: 26558908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.