These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 33957937)

  • 1. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial.
    Singh N; Saini M; Kumar N; Srivastava MVP; Mehndiratta A
    J Neuroeng Rehabil; 2021 May; 18(1):76. PubMed ID: 33957937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot observational study.
    Nath D; Singh N; Saini M; Banduni O; Kumar N; Srivastava MVP; Mehndiratta A
    Disabil Rehabil; 2024 Jun; 46(12):2640-2649. PubMed ID: 37383015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Case Report: Effect of Robotic Exoskeleton Based Therapy on Neurological and Functional Recovery of a Patient With Chronic Stroke.
    Singh N; Saini M; Kumar N; Srivastava MVP; Kumaran SS; Mehndiratta A
    Front Neurol; 2021; 12():680733. PubMed ID: 34322080
    [No Abstract]   [Full Text] [Related]  

  • 4. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: a feasibility study.
    Patel J; Fluet G; Qiu Q; Yarossi M; Merians A; Tunik E; Adamovich S
    J Neuroeng Rehabil; 2019 Jul; 16(1):92. PubMed ID: 31315612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unilateral Strength Training of the Less Affected Hand Improves Cortical Excitability and Clinical Outcomes in Patients With Subacute Stroke: A Randomized Controlled Trial.
    Salehi Dehno N; Kamali F; Shariat A; Jaberzadeh S
    Arch Phys Med Rehabil; 2021 May; 102(5):914-924. PubMed ID: 33460575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of repetitive transcranial magnetic stimulation combined with robot-assisted training on wrist muscle activation post-stroke.
    Miller KJ; Gallina A; Neva JL; Ivanova TD; Snow NJ; Ledwell NM; Xiao ZG; Menon C; Boyd LA; Garland SJ
    Clin Neurophysiol; 2019 Aug; 130(8):1271-1279. PubMed ID: 31163373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments.
    Du J; Yang F; Hu J; Hu J; Xu Q; Cong N; Zhang Q; Liu L; Mantini D; Zhang Z; Lu G; Liu X
    Neuroimage Clin; 2019; 21():101620. PubMed ID: 30527907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on motor function and cortex excitability in subacute stroke patients: A randomized controlled trial.
    Gong Y; Long XM; Xu Y; Cai XY; Ye M
    Clin Rehabil; 2021 May; 35(5):718-727. PubMed ID: 33222502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Transcranial Direct Current Stimulation (tDCS) Combined With Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial.
    Mazzoleni S; Tran VD; Dario P; Posteraro F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1458-1466. PubMed ID: 31170077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study.
    Sehle A; Stuerner J; Hassa T; Spiteri S; Schoenfeld MA; Liepert J
    J Neuroeng Rehabil; 2021 Jan; 18(1):6. PubMed ID: 33430912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS.
    Edwards DJ; Cortes M; Rykman-Peltz A; Chang J; Elder J; Thickbroom G; Mariman JJ; Gerber LM; Oromendia C; Krebs HI; Fregni F; Volpe BT; Pascual-Leone A
    Restor Neurol Neurosci; 2019; 37(2):167-180. PubMed ID: 30932903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects and safety of combined rTMS and action observation for recovery of function in the upper extremities in stroke patients: A randomized controlled trial.
    Noh JS; Lim JH; Choi TW; Jang SG; Pyun SB
    Restor Neurol Neurosci; 2019; 37(3):219-230. PubMed ID: 31177248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency rTMS over Contralesional M1 Increases Ipsilesional Cortical Excitability and Motor Function with Decreased Interhemispheric Asymmetry in Subacute Stroke: A Randomized Controlled Study.
    Luk KY; Ouyang HX; Pang MYC
    Neural Plast; 2022; 2022():3815357. PubMed ID: 35035473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Five-day course of paired associative stimulation fails to improve motor function in stroke patients.
    Tarri M; Brihmat N; Gasq D; Lepage B; Loubinoux I; De Boissezon X; Marque P; Castel-Lacanal E
    Ann Phys Rehabil Med; 2018 Mar; 61(2):78-84. PubMed ID: 29274471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: A randomized controlled trial.
    Meng Y; Zhang D; Hai H; Zhao YY; Ma YW
    Restor Neurol Neurosci; 2020; 38(1):109-118. PubMed ID: 32039879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings.
    Singh N; Saini M; Anand S; Kumar N; Srivastava MVP; Mehndiratta A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2369-2377. PubMed ID: 31545737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency rTMS in patients with subacute ischemic stroke: clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability.
    Blesneag AV; Slăvoacă DF; Popa L; Stan AD; Jemna N; Isai Moldovan F; Mureșanu DF
    J Med Life; 2015; 8(3):378-87. PubMed ID: 26351545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke.
    Bashir S; Vernet M; Najib U; Perez J; Alonso-Alonso M; Knobel M; Yoo WK; Edwards D; Pascual-Leone A
    Restor Neurol Neurosci; 2016 Aug; 34(4):677-89. PubMed ID: 27567763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of anodal transcranial direct current stimulation over the contralesional hemisphere on motor recovery in subacute stroke patients with severe upper extremity hemiparesis: Study protocol for a randomized controlled trial.
    Lee SH; Kim WS; Park J; Kim J; Paik NJ
    Medicine (Baltimore); 2020 Apr; 99(14):e19495. PubMed ID: 32243365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.