These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 33958483)
1. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Gong M; Wang S; Zha C; Chen MC; Huang HL; Wu Y; Zhu Q; Zhao Y; Li S; Guo S; Qian H; Ye Y; Chen F; Ying C; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Zhang K; Cao S; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Bastidas VM; Nemoto K; Munro WJ; Huo YH; Lu CY; Peng CZ; Zhu X; Pan JW Science; 2021 May; 372(6545):948-952. PubMed ID: 33958483 [TBL] [Abstract][Full Text] [Related]
2. Strongly correlated quantum walks with a 12-qubit superconducting processor. Yan Z; Zhang YR; Gong M; Wu Y; Zheng Y; Li S; Wang C; Liang F; Lin J; Xu Y; Guo C; Sun L; Peng CZ; Xia K; Deng H; Rong H; You JQ; Nori F; Fan H; Zhu X; Pan JW Science; 2019 May; 364(6442):753-756. PubMed ID: 31048551 [TBL] [Abstract][Full Text] [Related]
4. Generation of genuine entanglement up to 51 superconducting qubits. Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533 [TBL] [Abstract][Full Text] [Related]
5. Quantum computer-aided design for advanced superconducting qubit: Plasmonium. Liu FM; Wang C; Chen MC; Chen H; Li SW; Shang ZX; Ying C; Wang JW; Huo YH; Peng CZ; Zhu X; Lu CY; Pan JW Sci Bull (Beijing); 2023 Aug; 68(15):1625-1631. PubMed ID: 37453825 [TBL] [Abstract][Full Text] [Related]
6. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Wu Y; Bao WS; Cao S; Chen F; Chen MC; Chen X; Chung TH; Deng H; Du Y; Fan D; Gong M; Guo C; Guo C; Guo S; Han L; Hong L; Huang HL; Huo YH; Li L; Li N; Li S; Li Y; Liang F; Lin C; Lin J; Qian H; Qiao D; Rong H; Su H; Sun L; Wang L; Wang S; Wu D; Xu Y; Yan K; Yang W; Yang Y; Ye Y; Yin J; Ying C; Yu J; Zha C; Zhang C; Zhang H; Zhang K; Zhang Y; Zhao H; Zhao Y; Zhou L; Zhu Q; Lu CY; Peng CZ; Zhu X; Pan JW Phys Rev Lett; 2021 Oct; 127(18):180501. PubMed ID: 34767433 [TBL] [Abstract][Full Text] [Related]
7. A programmable two-qubit quantum processor in silicon. Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962 [TBL] [Abstract][Full Text] [Related]
8. Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. Gong M; Chen MC; Zheng Y; Wang S; Zha C; Deng H; Yan Z; Rong H; Wu Y; Li S; Chen F; Zhao Y; Liang F; Lin J; Xu Y; Guo C; Sun L; Castellano AD; Wang H; Peng C; Lu CY; Zhu X; Pan JW Phys Rev Lett; 2019 Mar; 122(11):110501. PubMed ID: 30951346 [TBL] [Abstract][Full Text] [Related]
10. Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor. Qiang X; Wang Y; Xue S; Ge R; Chen L; Liu Y; Huang A; Fu X; Xu P; Yi T; Xu F; Deng M; Wang JB; Meinecke JDA; Matthews JCF; Cai X; Yang X; Wu J Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33637521 [TBL] [Abstract][Full Text] [Related]
11. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Zhu Q; Cao S; Chen F; Chen MC; Chen X; Chung TH; Deng H; Du Y; Fan D; Gong M; Guo C; Guo C; Guo S; Han L; Hong L; Huang HL; Huo YH; Li L; Li N; Li S; Li Y; Liang F; Lin C; Lin J; Qian H; Qiao D; Rong H; Su H; Sun L; Wang L; Wang S; Wu D; Wu Y; Xu Y; Yan K; Yang W; Yang Y; Ye Y; Yin J; Ying C; Yu J; Zha C; Zhang C; Zhang H; Zhang K; Zhang Y; Zhao H; Zhao Y; Zhou L; Lu CY; Peng CZ; Zhu X; Pan JW Sci Bull (Beijing); 2022 Feb; 67(3):240-245. PubMed ID: 36546072 [TBL] [Abstract][Full Text] [Related]
13. Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits. Ying C; Cheng B; Zhao Y; Huang HL; Zhang YN; Gong M; Wu Y; Wang S; Liang F; Lin J; Xu Y; Deng H; Rong H; Peng CZ; Yung MH; Zhu X; Pan JW Phys Rev Lett; 2023 Mar; 130(11):110601. PubMed ID: 37001092 [TBL] [Abstract][Full Text] [Related]
14. Operation of a silicon quantum processor unit cell above one kelvin. Yang CH; Leon RCC; Hwang JCC; Saraiva A; Tanttu T; Huang W; Camirand Lemyre J; Chan KW; Tan KY; Hudson FE; Itoh KM; Morello A; Pioro-Ladrière M; Laucht A; Dzurak AS Nature; 2020 Apr; 580(7803):350-354. PubMed ID: 32296190 [TBL] [Abstract][Full Text] [Related]
15. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics. Yang CP; Zheng ZF; Zhang Y Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988 [TBL] [Abstract][Full Text] [Related]
16. Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor. Gong M; Huang HL; Wang S; Guo C; Li S; Wu Y; Zhu Q; Zhao Y; Guo S; Qian H; Ye Y; Zha C; Chen F; Ying C; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Zhang K; Cao S; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Sakurai A; Nemoto K; Munro WJ; Huo YH; Lu CY; Peng CZ; Zhu X; Pan JW Sci Bull (Beijing); 2023 May; 68(9):906-912. PubMed ID: 37085397 [TBL] [Abstract][Full Text] [Related]
17. Deep quantum neural networks on a superconducting processor. Pan X; Lu Z; Wang W; Hua Z; Xu Y; Li W; Cai W; Li X; Wang H; Song YP; Zou CL; Deng DL; Sun L Nat Commun; 2023 Jul; 14(1):4006. PubMed ID: 37414812 [TBL] [Abstract][Full Text] [Related]
18. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Sillanpää MA; Park JI; Simmonds RW Nature; 2007 Sep; 449(7161):438-42. PubMed ID: 17898762 [TBL] [Abstract][Full Text] [Related]
19. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials. Ivić Z; Lazarides N; Tsironis GP Sci Rep; 2016 Jul; 6():29374. PubMed ID: 27403780 [TBL] [Abstract][Full Text] [Related]