These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33958483)

  • 21. High-Contrast ZZ Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity.
    Zhao P; Xu P; Lan D; Chu J; Tan X; Yu H; Yu Y
    Phys Rev Lett; 2020 Nov; 125(20):200503. PubMed ID: 33258656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A bifunctional superconducting cell as flux qubit and neuron.
    Pashin DS; Pikunov PV; Bastrakova MV; Schegolev AE; Klenov NV; Soloviev II
    Beilstein J Nanotechnol; 2023; 14():1116-1126. PubMed ID: 38034474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum walk processes in quantum devices.
    Madhu AK; Melnikov AA; Fedichkin LE; Alodjants AP; Lee RK
    Heliyon; 2023 Mar; 9(3):e13416. PubMed ID: 36895413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Error mitigation extends the computational reach of a noisy quantum processor.
    Kandala A; Temme K; Córcoles AD; Mezzacapo A; Chow JM; Gambetta JM
    Nature; 2019 Mar; 567(7749):491-495. PubMed ID: 30918370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A programmable qudit-based quantum processor.
    Chi Y; Huang J; Zhang Z; Mao J; Zhou Z; Chen X; Zhai C; Bao J; Dai T; Yuan H; Zhang M; Dai D; Tang B; Yang Y; Li Z; Ding Y; Oxenløwe LK; Thompson MG; O'Brien JL; Li Y; Gong Q; Wang J
    Nat Commun; 2022 Mar; 13(1):1166. PubMed ID: 35246519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control and readout of a superconducting qubit using a photonic link.
    Lecocq F; Quinlan F; Cicak K; Aumentado J; Diddams SA; Teufel JD
    Nature; 2021 Mar; 591(7851):575-579. PubMed ID: 33762768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum computation with universal error mitigation on a superconducting quantum processor.
    Song C; Cui J; Wang H; Hao J; Feng H; Li Y
    Sci Adv; 2019 Sep; 5(9):eaaw5686. PubMed ID: 31523709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breaking the trade-off between fast control and long lifetime of a superconducting qubit.
    Kono S; Koshino K; Lachance-Quirion D; van Loo AF; Tabuchi Y; Noguchi A; Nakamura Y
    Nat Commun; 2020 Jul; 11(1):3683. PubMed ID: 32703942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semiconductor quantum computation.
    Zhang X; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Natl Sci Rev; 2019 Jan; 6(1):32-54. PubMed ID: 34691830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer.
    Huerta Alderete C; Singh S; Nguyen NH; Zhu D; Balu R; Monroe C; Chandrashekar CM; Linke NM
    Nat Commun; 2020 Jul; 11(1):3720. PubMed ID: 32709855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Random access quantum information processors using multimode circuit quantum electrodynamics.
    Naik RK; Leung N; Chakram S; Groszkowski P; Lu Y; Earnest N; McKay DC; Koch J; Schuster DI
    Nat Commun; 2017 Dec; 8(1):1904. PubMed ID: 29199271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propagation and Localization of Collective Excitations on a 24-Qubit Superconducting Processor.
    Ye Y; Ge ZY; Wu Y; Wang S; Gong M; Zhang YR; Zhu Q; Yang R; Li S; Liang F; Lin J; Xu Y; Guo C; Sun L; Cheng C; Ma N; Meng ZY; Deng H; Rong H; Lu CY; Peng CZ; Fan H; Zhu X; Pan JW
    Phys Rev Lett; 2019 Aug; 123(5):050502. PubMed ID: 31491305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FPGA-based electronic system for the control and readout of superconducting quantum processors.
    Yang Y; Shen Z; Zhu X; Wang Z; Zhang G; Zhou J; Jiang X; Deng C; Liu S
    Rev Sci Instrum; 2022 Jul; 93(7):074701. PubMed ID: 35922305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mach-Zehnder interferometry in a strongly driven superconducting qubit.
    Oliver WD; Yu Y; Lee JC; Berggren KK; Levitov LS; Orlando TP
    Science; 2005 Dec; 310(5754):1653-7. PubMed ID: 16282527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice.
    Young AW; Eckner WJ; Schine N; Childs AM; Kaufman AM
    Science; 2022 Aug; 377(6608):885-889. PubMed ID: 35981010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analog Quantum Control of Magnonic Cat States on a Chip by a Superconducting Qubit.
    Kounalakis M; Bauer GEW; Blanter YM
    Phys Rev Lett; 2022 Jul; 129(3):037205. PubMed ID: 35905351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits.
    Bonderson P; Lutchyn RM
    Phys Rev Lett; 2011 Apr; 106(13):130505. PubMed ID: 21517366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solving Systems of Linear Equations with a Superconducting Quantum Processor.
    Zheng Y; Song C; Chen MC; Xia B; Liu W; Guo Q; Zhang L; Xu D; Deng H; Huang K; Wu Y; Yan Z; Zheng D; Lu L; Pan JW; Wang H; Lu CY; Zhu X
    Phys Rev Lett; 2017 May; 118(21):210504. PubMed ID: 28598660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the utility of quantum computing before fault tolerance.
    Kim Y; Eddins A; Anand S; Wei KX; van den Berg E; Rosenblatt S; Nayfeh H; Wu Y; Zaletel M; Temme K; Kandala A
    Nature; 2023 Jun; 618(7965):500-505. PubMed ID: 37316724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Quantum Randomness Processing Using Superconducting Qubits.
    Yuan X; Liu K; Xu Y; Wang W; Ma Y; Zhang F; Yan Z; Vijay R; Sun L; Ma X
    Phys Rev Lett; 2016 Jul; 117(1):010502. PubMed ID: 27419550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.