These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33958505)
1. Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Yunan NAM; Shin TY; Sabaratnam V J Microbiol Biotechnol; 2021 Jun; 31(6):823-832. PubMed ID: 33958505 [TBL] [Abstract][Full Text] [Related]
2. Sustainable use of the spent mushroom substrate of Pleurotus florida for production of lignocellulolytic enzymes. Rajavat AS; Rai S; Pandiyan K; Kushwaha P; Choudhary P; Kumar M; Chakdar H; Singh A; Karthikeyan N; Bagul SY; Agnihotri A; Saxena AK J Basic Microbiol; 2020 Feb; 60(2):173-184. PubMed ID: 31663623 [TBL] [Abstract][Full Text] [Related]
3. Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. Rosa D; Medeiros ABP; Martinez-Burgos WJ; do Nascimento JR; de Carvalho JC; Sydney EB; Soccol CR J Biotechnol; 2020 Nov; 323():17-23. PubMed ID: 32569792 [TBL] [Abstract][Full Text] [Related]
4. Enhancing biohydrogen gas production in anaerobic system via comparative chemical pre-treatment on palm oil mill effluent (POME). Arisht SN; Mahmod SS; Abdul PM; Indera Lutfi AA; Takriff MS; Lay CH; Silvamany H; Sittijunda S; Jahim JM J Environ Manage; 2022 Nov; 321():115892. PubMed ID: 35988402 [TBL] [Abstract][Full Text] [Related]
5. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Ong ES; Rabbani AH; Habashy MM; Abdeldayem OM; Al-Sakkari EG; Rene ER Environ Pollut; 2021 Dec; 291():118160. PubMed ID: 34562690 [TBL] [Abstract][Full Text] [Related]
6. Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Corrêa RC; da Silva BP; Castoldi R; Kato CG; de Sá-Nakanishi AB; Peralta RA; de Souza CG; Bracht A; Peralta RM Folia Microbiol (Praha); 2016 Sep; 61(5):439-48. PubMed ID: 26988863 [TBL] [Abstract][Full Text] [Related]
7. Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation. Marques De Souza CG; Zilly A; Peralta RM J Basic Microbiol; 2002; 42(2):83-90. PubMed ID: 11981872 [TBL] [Abstract][Full Text] [Related]
8. Decolorization and degradation potential of enhanced lignocellulolytic enzymes production by Pleurotus eryngii using cherry waste from industry. Akpinar M; Ozturk Urek R Biotechnol Appl Biochem; 2020 Sep; 67(5):760-773. PubMed ID: 31677305 [TBL] [Abstract][Full Text] [Related]
9. Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters. Economou CN; Philippoussis AN; Diamantopoulou PA FEMS Microbiol Lett; 2020 Apr; 367(8):. PubMed ID: 32267919 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Ganapathy B; Yahya A; Ibrahim N Environ Sci Pollut Res Int; 2019 Apr; 26(11):11113-11125. PubMed ID: 30788704 [TBL] [Abstract][Full Text] [Related]
11. Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains. Economou CN; Diamantopoulou PA; Philippoussis AN Appl Microbiol Biotechnol; 2017 Jun; 101(12):5213-5222. PubMed ID: 28361237 [TBL] [Abstract][Full Text] [Related]
12. Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata. Neoh CH; Lam CY; Lim CK; Yahya A; Ibrahim Z Environ Sci Pollut Res Int; 2014 Mar; 21(6):4397-408. PubMed ID: 24327114 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of the large-scale production process of oyster mushroom (Pleurotus ostreatus) with the analysis of succession and spatial heterogeneity of lignocellulolytic enzyme activities. Bánfi R; Pohner Z; Kovács J; Luzics S; Nagy A; Dudás M; Tanos P; Márialigeti K; Vajna B Fungal Biol; 2015 Dec; 119(12):1354-1363. PubMed ID: 26615756 [TBL] [Abstract][Full Text] [Related]
14. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. Darajeh N; Idris A; Fard Masoumi HR; Nourani A; Truong P; Sairi NA J Environ Manage; 2016 Oct; 181():343-352. PubMed ID: 27393941 [TBL] [Abstract][Full Text] [Related]
15. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches. Kim SH; Choi SM; Ju HJ; Jung JY Environ Technol; 2013; 34(13-16):2163-70. PubMed ID: 24350470 [TBL] [Abstract][Full Text] [Related]
16. Cellulase production by Khangkhachit W; Suyotha W; O-Thong S; Prasertsan P Prep Biochem Biotechnol; 2024 Jun; ():1-12. PubMed ID: 38909283 [TBL] [Abstract][Full Text] [Related]
17. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection. Lam MK; Lee KT Biotechnol Adv; 2011; 29(1):124-41. PubMed ID: 20940036 [TBL] [Abstract][Full Text] [Related]
18. Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Neoh CH; Yahya A; Adnan R; Abdul Majid Z; Ibrahim Z Environ Sci Pollut Res Int; 2013 May; 20(5):2912-23. PubMed ID: 23054764 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment on lignocellulose degrading enzymes and bioethanol production from spent mushroom substrate of Calocybe indica and Volvariella volvacea. Devi R; Thakur R; Kapoor S; Joshi SJ; Kumar A Environ Sci Pollut Res Int; 2024 Jun; 31(27):38878-38892. PubMed ID: 37071368 [TBL] [Abstract][Full Text] [Related]
20. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review. Liew WL; Kassim MA; Muda K; Loh SK; Affam AC J Environ Manage; 2015 Feb; 149():222-35. PubMed ID: 25463585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]