These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 33959108)
1. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Ferrarini A; Fracasso A; Spini G; Fornasier F; Taskin E; Fontanella MC; Beone GM; Amaducci S; Puglisi E Front Microbiol; 2021; 12():645893. PubMed ID: 33959108 [TBL] [Abstract][Full Text] [Related]
2. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
3. Promises and potential of Khan AG Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
5. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
6. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. Sorour AA; Khairy H; Zaghloul EH; Zaghloul HAH BMC Microbiol; 2022 Jul; 22(1):174. PubMed ID: 35799112 [TBL] [Abstract][Full Text] [Related]
7. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
9. Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Qin H; Wang J; Wang J; Lin X Ecotoxicol Environ Saf; 2019 Jan; 167():376-384. PubMed ID: 30366271 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
11. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Fiorentino N; Ventorino V; Rocco C; Cenvinzo V; Agrelli D; Gioia L; Di Mola I; Adamo P; Pepe O; Fagnano M Sci Total Environ; 2017 Jan; 575():1375-1383. PubMed ID: 27720598 [TBL] [Abstract][Full Text] [Related]
12. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). Tirry N; Kouchou A; El Omari B; Ferioun M; El Ghachtouli N J Genet Eng Biotechnol; 2021 Oct; 19(1):149. PubMed ID: 34613510 [TBL] [Abstract][Full Text] [Related]
13. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Zhu Y; Wang Y; He X; Li B; Du S Chemosphere; 2023 Oct; 338():139475. PubMed ID: 37442391 [TBL] [Abstract][Full Text] [Related]
14. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802 [TBL] [Abstract][Full Text] [Related]
15. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Ke T; Guo G; Liu J; Zhang C; Tao Y; Wang P; Xu Y; Chen L Environ Pollut; 2021 Feb; 271():116314. PubMed ID: 33360656 [TBL] [Abstract][Full Text] [Related]
16. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. Mukherjee P; Dutta J; Roy M; Thakur TK; Mitra A Environ Sci Pollut Res Int; 2024 Sep; 31(44):55851-55894. PubMed ID: 39251536 [TBL] [Abstract][Full Text] [Related]
17. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Bruno LB; Anbuganesan V; Karthik C; Tripti ; Kumar A; Banu JR; Freitas H; Rajkumar M J Environ Manage; 2021 Jul; 289():112553. PubMed ID: 33857710 [TBL] [Abstract][Full Text] [Related]
18. The Potential of Bioaugmentation-Assisted Phytoremediation Derived Maize Biomass for the Production of Biomethane via Anaerobic Digestion. Paulo AM; Caetano NS; Marques APGC Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896085 [TBL] [Abstract][Full Text] [Related]
19. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Syed A; Elgorban AM; Bahkali AH; Eswaramoorthy R; Iqbal RK; Danish S Sci Rep; 2023 Mar; 13(1):4471. PubMed ID: 36934106 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the single and combined effects of arsenic and antimony on growth and physiology of giant reed (Arundo donax L.). Shetty R; Vidya CS; VaculĂk M Environ Sci Pollut Res Int; 2021 Oct; 28(39):55476-55485. PubMed ID: 34138437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]