BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33959142)

  • 1. Exploring Biocontrol Agents From Microbial Keystone Taxa Associated to Suppressive Soil: A New Attempt for a Biocontrol Strategy.
    Zheng Y; Han X; Zhao D; Wei K; Yuan Y; Li Y; Liu M; Zhang CS
    Front Plant Sci; 2021; 12():655673. PubMed ID: 33959142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizospheric microbiota of suppressive soil protect plants against Fusarium solani infection.
    Li B; Yang P; Feng Y; Du C; Qi G; Zhao X
    Pest Manag Sci; 2024 Apr; ():. PubMed ID: 38578633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria.
    Li Y; Qi G; Xie Z; Li B; Wang R; Tan J; Shi H; Xiang B; Zhao X
    Microbiol Spectr; 2023 Feb; 11(1):e0203122. PubMed ID: 36515552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana.
    Lv N; Tao C; Ou Y; Wang J; Deng X; Liu H; Shen Z; Li R; Shen Q
    Microbiol Spectr; 2023 Feb; 11(2):e0352522. PubMed ID: 36786644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region.
    Siegel-Hertz K; Edel-Hermann V; Chapelle E; Terrat S; Raaijmakers JM; Steinberg C
    Front Microbiol; 2018; 9():568. PubMed ID: 29670584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering Underlying Drivers of Disease Suppressiveness Against Pathogenic
    Ou Y; Penton CR; Geisen S; Shen Z; Sun Y; Lv N; Wang B; Ruan Y; Xiong W; Li R; Shen Q
    Front Microbiol; 2019; 10():2535. PubMed ID: 31781059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocontrol potential of
    Sui X; Han X; Cao J; Li Y; Yuan Y; Gou J; Zheng Y; Meng C; Zhang C
    Front Microbiol; 2022; 13():940156. PubMed ID: 36081807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of bacterial communities in soil samples with and without tomato bacterial wilt caused by Ralstonia solanacearum species complex.
    Zhang Y; Hu A; Zhou J; Zhang W; Li P
    BMC Microbiol; 2020 Apr; 20(1):89. PubMed ID: 32290811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening, identification and evaluation of an acidophilic strain of
    Meng XJ; Wang LQ; Ma BG; Wei XH; Zhou Y; Sun ZX; Li YY
    Front Plant Sci; 2024; 15():1360173. PubMed ID: 38751839
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Shang XC; Cai X; Zhou Y; Han X; Zhang CS; Ilyas N; Li Y; Zheng Y
    Front Plant Sci; 2021; 12():738611. PubMed ID: 36406638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision Probiotics in Agroecosystems: Multiple Strategies of Native Soil Microbiotas for Conquering the Competitor Ralstonia solanacearum.
    Yin J; Zhang Z; Guo Y; Chen Y; Xu Y; Chen W; Shao Y; Yu Y; Zhu L; Chen L; Ruan L
    mSystems; 2022 Jun; 7(3):e0115921. PubMed ID: 35469423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Stimulation of Indigenous Bacterial Antagonists by γ-Glutamyl-
    Nishioka T; Suga H; Shimizu M
    Appl Environ Microbiol; 2022 Dec; 88(24):e0155422. PubMed ID: 36445356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis.
    Tan L; Zeng WA; Xiao Y; Li P; Gu S; Wu S; Zhai Z; Feng K; Deng Y; Hu Q
    Front Microbiol; 2021; 12():722626. PubMed ID: 34552573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Tomato Pathogen
    Su L; Zhang L; Nie D; Kuramae EE; Shen B; Shen Q
    Microorganisms; 2020 May; 8(6):. PubMed ID: 32471167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere.
    Liu X; Liu L; Gong J; Zhang L; Jiang Q; Huang K; Ding W
    AMB Express; 2022 Aug; 12(1):110. PubMed ID: 36036292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans.
    Shen Z; Penton CR; Lv N; Xue C; Yuan X; Ruan Y; Li R; Shen Q
    Microb Ecol; 2018 Apr; 75(3):739-750. PubMed ID: 28791467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil.
    Zhou D; Jing T; Chen Y; Wang F; Qi D; Feng R; Xie J; Li H
    BMC Microbiol; 2019 Jul; 19(1):161. PubMed ID: 31299891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics.
    Tracanna V; Ossowicki A; Petrus MLC; Overduin S; Terlouw BR; Lund G; Robinson SL; Warris S; Schijlen EGWM; van Wezel GP; Raaijmakers JM; Garbeva P; Medema MH
    mSystems; 2021 Jun; 6(3):e0111620. PubMed ID: 34100635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of bacterial community metabolites to bacterial wilt caused by
    Wei C; Liang J; Wang R; Chi L; Wang W; Tan J; Shi H; Song X; Cui Z; Xie Q; Cheng D; Wang X
    Front Plant Sci; 2023; 14():1339478. PubMed ID: 38317834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol of Bacterial Wilt Disease Through Complex Interaction Between Tomato Plant, Antagonists, the Indigenous Rhizosphere Microbiota, and
    Elsayed TR; Jacquiod S; Nour EH; Sørensen SJ; Smalla K
    Front Microbiol; 2019; 10():2835. PubMed ID: 31998244
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.