These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33959334)

  • 1. Generative models of network dynamics provide insight into the effects of trade on endemic livestock disease.
    Knight MA; White PCL; Hutchings MR; Davidson RS; Marion G
    R Soc Open Sci; 2021 Mar; 8(3):201715. PubMed ID: 33959334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanistic model captures livestock trading, disease dynamics, and compensatory behaviour in response to control measures.
    Knight MA; Hutchings MR; White PCL; Davidson RS; Marion G
    J Theor Biol; 2022 Apr; 539():111059. PubMed ID: 35181285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why sold, not culled? Analysing farm and animal characteristics associated with livestock selling practices.
    Hidano A; Gates MC
    Prev Vet Med; 2019 May; 166():65-77. PubMed ID: 30935507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the efficacy of regionalisation in limiting high-risk livestock trade movements.
    Hidano A; Carpenter TE; Stevenson MA; Gates MC
    Prev Vet Med; 2016 Oct; 133():31-41. PubMed ID: 27720025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Livestock Disease Management for Trading Across Different Regulatory Regimes.
    Bate AM; Jones G; Kleczkowski A; Naylor R; Timmis J; White PCL; Touza J
    Ecohealth; 2018 Jun; 15(2):302-316. PubMed ID: 29435773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging DNA typing and network analysis to assess the transmission of paratuberculosis between farms.
    Marquetoux N; Heuer C; Wilson P; Ridler A; Stevenson M
    Prev Vet Med; 2016 Nov; 134():113-121. PubMed ID: 27836032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control.
    VanderWaal KL; Picasso C; Enns EA; Craft ME; Alvarez J; Fernandez F; Gil A; Perez A; Wells S
    Prev Vet Med; 2016 Jan; 123():12-22. PubMed ID: 26708252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting farm-level animal populations using environmental and socioeconomic variables.
    van Andel M; Jewell C; McKenzie J; Hollings T; Robinson A; Burgman M; Bingham P; Carpenter T
    Prev Vet Med; 2017 Sep; 145():121-132. PubMed ID: 28903868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Temporal Network Model for Livestock Trade Systems.
    Ansari S; Heitzig J; Brzoska L; Lentz HHK; Mihatsch J; Fritzemeier J; Moosavi MR
    Front Vet Sci; 2021; 8():766547. PubMed ID: 34966806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation modeling of influenza transmission through backyard pig trade networks in a wildlife/livestock interface area.
    Mateus-Anzola J; Wiratsudakul A; Rico-Chávez O; Ojeda-Flores R
    Trop Anim Health Prod; 2019 Sep; 51(7):2019-2024. PubMed ID: 31041720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Pig and Poultry Trade Networks and Farming Practices Within the Pacific Islands as a Basis for Surveillance.
    Brioudes A; Gummow B
    Transbound Emerg Dis; 2017 Feb; 64(1):284-299. PubMed ID: 25923011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of trading networks on the risk of bovine tuberculosis incidents on cattle farms in Great Britain.
    Fielding HR; McKinley TJ; Delahay RJ; Silk MJ; McDonald RA
    R Soc Open Sci; 2020 Apr; 7(4):191806. PubMed ID: 32431877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Dynamic Human Behavioral Changes in Animal Disease Models: Challenges and Opportunities for Addressing Bias.
    Hidano A; Enticott G; Christley RM; Gates MC
    Front Vet Sci; 2018; 5():137. PubMed ID: 29977897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sheep movement networks and the transmission of infectious diseases.
    Volkova VV; Howey R; Savill NJ; Woolhouse ME
    PLoS One; 2010 Jun; 5(6):e11185. PubMed ID: 20567504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilevel model for airborne transmission of foot-and-mouth disease applied to Swedish livestock.
    Björnham O; Sigg R; Burman J
    PLoS One; 2020; 15(5):e0232489. PubMed ID: 32453749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread.
    Bigras-Poulin M; Barfod K; Mortensen S; Greiner M
    Prev Vet Med; 2007 Jul; 80(2-3):143-65. PubMed ID: 17383759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex responses to movement-based disease control: when livestock trading helps.
    Prentice JC; Marion G; Hutchings MR; McNeilly TN; Matthews L
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of livestock-associated methicillin resistant Staphylococcus aureus in pig movement networks: Insight from mathematical modeling and French data.
    Bastard J; Andraud M; Chauvin C; Glaser P; Opatowski L; Temime L
    Epidemics; 2020 Jun; 31():100389. PubMed ID: 32146319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis of Danish cattle industry trade patterns as an evaluation of risk potential for disease spread.
    Bigras-Poulin M; Thompson RA; Chriel M; Mortensen S; Greiner M
    Prev Vet Med; 2006 Sep; 76(1-2):11-39. PubMed ID: 16780975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating potential epidemic size following introduction of a long-incubation disease in scale-free connected networks of milking-cow movements in Ontario, Canada.
    Dubé C; Ribble C; Kelton D; McNab B
    Prev Vet Med; 2011 May; 99(2-4):102-11. PubMed ID: 21388696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.