These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33959739)

  • 1. Construction of hierarchical layered hydroxide grown
    Li C; Zhang G; Li X; Wang H; Huo P; Yan Y; Wang X
    Dalton Trans; 2021 Jun; 50(21):7337-7347. PubMed ID: 33959739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Fabrication of a Uniform Co-MOF Shell Coordinated with CoNiO
    Wang L; Jia D; Yue L; Zheng K; Zhang A; Jia Q; Liu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47526-47538. PubMed ID: 32946221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Nickel-Cobalt Hydroxide Composite Nanosheets-Incorporated Nitrogen-Doped Carbon Nanotubes Embedded with Nickel-Cobalt Alloy Nanoparticles for Driving a 2 V Asymmetric Supercapacitor.
    Shi Z; Xu X; Jing P; Liu B; Zhang J
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7263-7273. PubMed ID: 36715666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Synthesis of Flower-like Hierarchical NiCo-Layered Double Hydroxide Integrated with Metal-Organic Framework-Derived Co@C for Supercapacitors.
    Yuan J; Li Y; Lu G; Gao Z; Wei F; Qi J; Sui Y; Yan Q; Wang S
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36143-36153. PubMed ID: 37486015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical PANI/NiCo-LDH Core-Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor.
    Ge X; He Y; Plachy T; Kazantseva N; Saha P; Cheng Q
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of CNTs/CoNiFe-LDH Nanocomposite with High Specific Surface Area for Asymmetric Supercapacitor.
    Wang J; Ding Q; Bai C; Wang F; Sun S; Xu Y; Li H
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Situ Fabrication of MOF-Derived Co-Co Layered Double Hydroxide Hollow Nanocages/Graphene Composite: A Novel Electrode Material with Superior Electrochemical Performance.
    Bai X; Liu J; Liu Q; Chen R; Jing X; Li B; Wang J
    Chemistry; 2017 Oct; 23(59):14839-14847. PubMed ID: 28809067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeycomb porous heterostructures of NiMo layered double hydroxide nanosheets anchored on CoNi metal-organic framework nano-blocks as electrodes for asymmetric supercapacitors.
    Liang J; Qin S; Luo S; Pan D; Xu P; Li J
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):504-516. PubMed ID: 37729758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ selective selenization of ZIF-derived CoSe
    Zhang Q; Liu S; Huang J; Fu H; Fan Q; Zong H; Guo H; Zhang A
    J Colloid Interface Sci; 2024 Feb; 655():273-285. PubMed ID: 37944375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MgCo
    Liu Z; Li A; Qiu Y; Zhao Q; Zhong Y; Cui L; Yang W; Razal JM; Barrow CJ; Liu J
    J Colloid Interface Sci; 2021 Jun; 592():455-467. PubMed ID: 33711647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors.
    Zhang L; Cai P; Wei Z; Liu T; Yu J; Al-Ghamdi AA; Wageh S
    J Colloid Interface Sci; 2021 Apr; 588():637-645. PubMed ID: 33267956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF-derived NiCo-LDH Nanocages on CuO Nanorod Arrays for Robust and High Energy Density Asymmetric Supercapacitors.
    Bi Q; Hu X; Tao K
    Chemistry; 2023 Feb; 29(11):e202203264. PubMed ID: 36450659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Ni,Co)Se
    Li X; Wu H; Guan C; Elshahawy AM; Dong Y; Pennycook SJ; Wang J
    Small; 2019 Jan; 15(3):e1803895. PubMed ID: 30556280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors.
    Niu H; Zhang Y; Liu Y; Xin N; Shi W
    J Colloid Interface Sci; 2019 Mar; 539():545-552. PubMed ID: 30611050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical core-shell 2D MOF nanosheet hybrid arrays for high-performance hybrid supercapacitors.
    Bi Q; Ma Q; Tao K; Han L
    Dalton Trans; 2021 Jun; 50(23):8179-8188. PubMed ID: 34031679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationally designed NiMn LDH@NiCo
    Li J; Wang L; Yang Y; Wang B; Duan C; Zheng L; Li R; Wei Y; Xu J; Yin Z
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34530406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Construction of NiCoMn-LDH Derived from Zeolitic Imidazolate Framework on Eggshell-Like Carbon Skeleton for High-Performance Flexible Supercapacitors.
    Lu Z; Zhao K; Guo H; Duan L; Sun H; Chen K; Liu J
    Small; 2024 Jun; 20(23):e2309814. PubMed ID: 38155521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedding of conductive Ag nanoparticles among honeycomb-like NiMn layered double hydroxide nanosheet arrays for ultra-high performance flexible supercapacitors.
    Fu H; Zhang A; Zong H; Jin F; Guo H; Liu J
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):938-949. PubMed ID: 36152618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical NiCo-LDH core/shell homostructural electrodes with MOF-derived shell for electrochemical energy storage.
    Zheng K; Liao L; Zhang Y; Tan H; Liu J; Li C; Jia D
    J Colloid Interface Sci; 2022 Aug; 619():75-83. PubMed ID: 35367926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
    Lai F; Miao YE; Zuo L; Lu H; Huang Y; Liu T
    Small; 2016 Jun; 12(24):3235-44. PubMed ID: 27135301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.