These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33959753)

  • 1. Anti-bias training for (sc)RNA-seq: experimental and computational approaches to improve precision.
    Davies P; Jones M; Liu J; Hebenstreit D
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33959753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias in RNA-seq Library Preparation: Current Challenges and Solutions.
    Shi H; Zhou Y; Jia E; Pan M; Bai Y; Ge Q
    Biomed Res Int; 2021; 2021():6647597. PubMed ID: 33987443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the Allele-Specific Expression of SNVs From 10× Genomics Single-Cell RNA-Sequencing Data.
    M PN; Liu H; Bousounis P; Spurr L; Alomran N; Ibeawuchi H; Sein J; Reece-Stremtan D; Horvath A
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32106453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions.
    Liu J; Liu X; Ren X; Li G
    Bioinformatics; 2019 Nov; 35(21):4264-4271. PubMed ID: 30951147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets.
    Ner-Gaon H; Melchior A; Golan N; Ben-Haim Y; Shay T
    J Immunol; 2017 May; 198(9):3375-3379. PubMed ID: 28416714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts.
    Zhang L; Zhang S
    J Mol Cell Biol; 2021 Apr; 13(1):29-40. PubMed ID: 33002136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tools for the analysis of high-dimensional single-cell RNA sequencing data.
    Wu Y; Zhang K
    Nat Rev Nephrol; 2020 Jul; 16(7):408-421. PubMed ID: 32221477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene length and detection bias in single cell RNA sequencing protocols.
    Phipson B; Zappia L; Oshlack A
    F1000Res; 2017; 6():595. PubMed ID: 28529717
    [No Abstract]   [Full Text] [Related]  

  • 11. Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways.
    Archer N; Walsh MD; Shahrezaei V; Hebenstreit D
    Cell Syst; 2016 Nov; 3(5):467-479.e12. PubMed ID: 27840077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
    Qi J; Zhou Y; Zhao Z; Jin S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009118. PubMed ID: 34138847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WASP: a versatile, web-accessible single cell RNA-Seq processing platform.
    Hoek A; Maibach K; Özmen E; Vazquez-Armendariz AI; Mengel JP; Hain T; Herold S; Goesmann A
    BMC Genomics; 2021 Mar; 22(1):195. PubMed ID: 33736596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goals and approaches for each processing step for single-cell RNA sequencing data.
    Zhang Z; Cui F; Wang C; Zhao L; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying pluripotency landscape of cell differentiation from scRNA-seq data by continuous birth-death process.
    Shi J; Li T; Chen L; Aihara K
    PLoS Comput Biol; 2019 Nov; 15(11):e1007488. PubMed ID: 31721764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.