BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3395976)

  • 1. In vivo cell interactions with calcium phosphate bioceramics.
    Daculsi G; Hartmann DJ; Heughebaert M; Hamel L; Le Nihouannen JC
    J Submicrosc Cytol Pathol; 1988 Apr; 20(2):379-84. PubMed ID: 3395976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophages in degradation of collagen/hydroxylapatite(CHA), beta-tricalcium phosphate ceramics (TCP) artificial bone graft. An in vivo study.
    Xia ZD; Zhu TB; Du JY; Zheng QX; Wang L; Li SP; Chang CY; Fang SY
    Chin Med J (Engl); 1994 Nov; 107(11):845-9. PubMed ID: 7867393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon substitution in the calcium phosphate bioceramics.
    Pietak AM; Reid JW; Stott MJ; Sayer M
    Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].
    Duan Y; Wu Y; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation behavior of various calcium phosphate materials in bone tissue.
    Klein CP; Driessen AA; de Groot K; van den Hooff A
    J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An autoradiographic study of calcium phosphate ceramic bone implants in turkeys.
    Metsger DS; DePhilip RM; Hayes TG
    Clin Orthop Relat Res; 1993 Jun; (291):283-94. PubMed ID: 8389263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of calcium phosphate ceramics and glass-ceramics on cultured cells and their surrounding media.
    Hyakuna K; Yamamuro T; Kotoura Y; Kakutani Y; Kitsugi T; Takagi H; Oka M; Kokubo T
    J Biomed Mater Res; 1989 Sep; 23(9):1049-66. PubMed ID: 2777833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An experimental comparative study of hydroxyapatite and tricalcium-phosphate as bone substitutes].
    Nishina H
    Nihon Seikeigeka Gakkai Zasshi; 1989 Oct; 63(10):1237-47. PubMed ID: 2584833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Osseointegration of 2 different types of calcium phosphate materials: ceramics and ionic cements].
    Frayssinet P; Gineste L; Rouquet N
    Morphologie; 1998; 82(256):3-7. PubMed ID: 11928120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
    Brodie JC; Goldie E; Connel G; Merry J; Grant MH
    J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora.
    Kawamura H; Ito A; Muramatsu T; Miyakawa S; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Jun; 65(4):468-74. PubMed ID: 12761837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S; Anada T; Honda Y; Suzuki O
    Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.