These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33959895)

  • 1. Neural systems underlying the learning of cognitive effort costs.
    Sayalı C; Badre D
    Cogn Affect Behav Neurosci; 2021 Aug; 21(4):698-716. PubMed ID: 33959895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural systems of cognitive demand avoidance.
    Sayalı C; Badre D
    Neuropsychologia; 2019 Feb; 123():41-54. PubMed ID: 29944865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the juice worth the squeeze? Learning the marginal value of mental effort over time.
    Otto AR; Braem S; Silvetti M; Vassena E
    J Exp Psychol Gen; 2022 Oct; 151(10):2324-2341. PubMed ID: 35389742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
    Klein-Flügge MC; Kennerley SW; Friston K; Bestmann S
    J Neurosci; 2016 Sep; 36(39):10002-15. PubMed ID: 27683898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The opportunity cost of time modulates cognitive effort.
    Otto AR; Daw ND
    Neuropsychologia; 2019 Feb; 123():92-105. PubMed ID: 29750987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development.
    Hauser TU; Iannaccone R; Walitza S; Brandeis D; Brem S
    Neuroimage; 2015 Jan; 104():347-54. PubMed ID: 25234119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
    Nagase AM; Onoda K; Foo JC; Haji T; Akaishi R; Yamaguchi S; Sakai K; Morita K
    J Neurosci; 2018 Mar; 38(10):2631-2651. PubMed ID: 29431647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysfunctional effort-based decision-making underlies apathy in genetic cerebral small vessel disease.
    Le Heron C; Manohar S; Plant O; Muhammed K; Griffanti L; Nemeth A; Douaud G; Markus HS; Husain M
    Brain; 2018 Nov; 141(11):3193-3210. PubMed ID: 30346491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network.
    Westbrook A; Lamichhane B; Braver T
    J Neurosci; 2019 May; 39(20):3934-3947. PubMed ID: 30850512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG correlates of physical effort and reward processing during reinforcement learning.
    Palidis DJ; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):610-622. PubMed ID: 32727262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the striatum in effort-based decision-making in the absence of reward.
    Schouppe N; Demanet J; Boehler CN; Ridderinkhof KR; Notebaert W
    J Neurosci; 2014 Feb; 34(6):2148-54. PubMed ID: 24501355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.
    Hosking JG; Floresco SB; Winstanley CA
    Neuropsychopharmacology; 2015 Mar; 40(4):1005-15. PubMed ID: 25328051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effort Reinforces Learning.
    Jarvis H; Stevenson I; Huynh AQ; Babbage E; Coxon J; Chong TT
    J Neurosci; 2022 Oct; 42(40):7648-7658. PubMed ID: 36096671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Need for cognition is associated with the interaction of reward and task-load on effort: A verification and extension study.
    Zhang M; Palmer CV; Pratt SR; McNeil MR; Siegle GJ
    Int J Psychophysiol; 2022 Oct; 180():60-67. PubMed ID: 35931237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-specific prioritization of reward and effort information: Novel insights from behavior and computational modeling.
    Vassena E; Deraeve J; Alexander WH
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):619-636. PubMed ID: 30607834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural model for learning-to-learn of novel task sets in the motor domain.
    Pitti A; Braud R; Mahé S; Quoy M; Gaussier P
    Front Psychol; 2013; 4():771. PubMed ID: 24155736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward circuitry activation reflects social preferences in the face of cognitive effort.
    Sullivan-Toole H; Dobryakova E; DePasque S; Tricomi E
    Neuropsychologia; 2019 Feb; 123():55-66. PubMed ID: 29906456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal impact of consolidation on learned switch-readiness.
    Bejjani C; Siqi-Liu A; Egner T
    J Exp Psychol Learn Mem Cogn; 2021 Oct; 47(10):1622-1637. PubMed ID: 34694824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurocomputational mechanisms underlying subjective valuation of effort costs.
    Chong TT; Apps M; Giehl K; Sillence A; Grima LL; Husain M
    PLoS Biol; 2017 Feb; 15(2):e1002598. PubMed ID: 28234892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How pupil responses track value-based decision-making during and after reinforcement learning.
    Van Slooten JC; Jahfari S; Knapen T; Theeuwes J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006632. PubMed ID: 30500813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.