BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 33959981)

  • 21. Gadolinium as a neutron capture therapy agent.
    Shih JL; Brugger RM
    Med Phys; 1992; 19(3):733-44. PubMed ID: 1508113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing stochastic proton interactions simulated using TOPAS-nBio to experimental data from fluorescent nuclear track detectors.
    Underwood TS; Sung W; McFadden CH; McMahon SJ; Hall DC; McNamara AL; Paganetti H; Sawakuchi GO; Schuemann J
    Phys Med Biol; 2017 Apr; 62(8):3237-3249. PubMed ID: 28350546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue.
    Lund CM; Famulari G; Montgomery L; Kildea J
    Phys Med; 2020 May; 73():29-42. PubMed ID: 32283505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.
    Peters T; Grunewald C; Blaickner M; Ziegner M; Schütz C; Iffland D; Hampel G; Nawroth T; Langguth P
    Radiat Oncol; 2015 Feb; 10():52. PubMed ID: 25889824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter.
    Hu N; Tanaka H; Takata T; Okazaki K; Uchida R; Sakurai Y
    J Radiat Res; 2020 Mar; 61(2):214-220. PubMed ID: 32030430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TOPAS Monte Carlo simulation for double scattering proton therapy and dosimetric evaluation.
    Liu H; Li Z; Slopsema R; Hong L; Pei X; Xu XG
    Phys Med; 2019 Jun; 62():53-62. PubMed ID: 31153399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation.
    Shan J; Feng H; Morales DH; Patel SH; Wong WW; Fatyga M; Bues M; Schild SE; Foote RL; Liu W
    Med Phys; 2022 Oct; 49(10):6666-6683. PubMed ID: 35960865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Monte Carlo-based analytic model of neutron dose equivalent for a mevion gantry-mounted passively scattered proton system for craniospinal irradiation.
    Baradaran-Ghahfarokhi M; Reynoso F; Sun B; Darafsheh A; Prusator MT; Mutic S; Zhao T
    Med Phys; 2020 Sep; 47(9):4509-4521. PubMed ID: 32473612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secondary neutron dosimetry for conformal FLASH proton therapy.
    Chen D; Motlagh SAO; Stappen FV; Labarbe R; Bell B; Kim M; Teo BK; Dong L; Zou W; Diffenderfer ES
    Med Phys; 2024 Apr; ():. PubMed ID: 38597815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of the DNA damage yield and relative biological effectiveness in boron neutron capture therapy via the Monte Carlo track structure simulation.
    Han Y; Geng C; Liu Y; Wu R; Li M; Yu C; Altieri S; Tang X
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37524085
    [No Abstract]   [Full Text] [Related]  

  • 34. Microdosimetry-based investigation of biological effectiveness of
    Chattaraj A; Selvam TP
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797652
    [No Abstract]   [Full Text] [Related]  

  • 35. TOPAS Simulation of the Mevion S250 compact proton therapy unit.
    Prusator M; Ahmad S; Chen Y
    J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.
    Lee C; Lee S; Lee SJ; Song H; Kim DH; Cho S; Jo K; Han Y; Chung YH; Kim JS
    PLoS One; 2017; 12(10):e0186544. PubMed ID: 29045491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary study of the relative and compound biological effectiveness model for boron neutron capture therapy based on nanodosimetry.
    Mao H; Zhang H; Luo Y; Yang J; Liu Y; Zhang S; Chen W; Li Q; Dai Z
    Med Phys; 2024 Apr; 51(4):3076-3092. PubMed ID: 38408025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.