These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 33960214)
1. Magnetically driven treatments: optimizing performance by mitigation of eddy currents. Tsiapla AR; Angelou K; Angelakeris M Nanomedicine (Lond); 2021 May; 16(11):895-907. PubMed ID: 33960214 [No Abstract] [Full Text] [Related]
2. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Tsiapla AR; Kalimeri AA; Maniotis N; Myrovali E; Samaras T; Angelakeris M; Kalogirou O Int J Hyperthermia; 2021; 38(1):511-522. PubMed ID: 33784924 [No Abstract] [Full Text] [Related]
3. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449 [TBL] [Abstract][Full Text] [Related]
4. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363 [TBL] [Abstract][Full Text] [Related]
5. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments. Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196 [No Abstract] [Full Text] [Related]
6. Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia. Pefanis G; Maniotis N; Tsiapla AR; Makridis A; Samaras T; Angelakeris M Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159900 [TBL] [Abstract][Full Text] [Related]
7. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer. Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560 [TBL] [Abstract][Full Text] [Related]
8. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
9. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990 [TBL] [Abstract][Full Text] [Related]
10. An algorithm for eddy currents symmetrization and compensation. off. Zur Y; Stokar S Magn Reson Med; 1996 Feb; 35(2):252-60. PubMed ID: 8622591 [TBL] [Abstract][Full Text] [Related]
11. Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents. Balousis A; Maniotis N; Samaras T Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672340 [TBL] [Abstract][Full Text] [Related]
12. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet. Li X; Xia L; Chen W; Liu F; Crozier S; Xie D J Magn Reson; 2011 Jan; 208(1):148-55. PubMed ID: 21106418 [TBL] [Abstract][Full Text] [Related]
13. Multilayer integral method for simulation of eddy currents in thin volumes of arbitrary geometry produced by MRI gradient coils. Sanchez Lopez H; Freschi F; Trakic A; Smith E; Herbert J; Fuentes M; Wilson S; Liu L; Repetto M; Crozier S Magn Reson Med; 2014 May; 71(5):1912-22. PubMed ID: 23818162 [TBL] [Abstract][Full Text] [Related]
14. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating]. Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650 [TBL] [Abstract][Full Text] [Related]
15. Mitigation of Intra-coil Eddy Currents in Split Gradient Coils in a Hybrid MRI-LINAC System. Tang F; Freschi F; Repetto M; Li Y; Liu F; Crozier S IEEE Trans Biomed Eng; 2017 Mar; 64(3):725-732. PubMed ID: 27249823 [TBL] [Abstract][Full Text] [Related]
16. Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers. Stigliano RV; Danelyan I; Gabriadze G; Shoshiashvili L; Baker I; Hoopes PJ; Jobava R; Shubitidze F Int J Hyperthermia; 2024; 41(1):2391008. PubMed ID: 39205623 [TBL] [Abstract][Full Text] [Related]
17. Effects of B Curcuru AN; Lewis BC; Kim T; Yang D; Michael Gach H Med Phys; 2021 Jun; 48(6):2929-2938. PubMed ID: 33720421 [TBL] [Abstract][Full Text] [Related]
18. [Study on the thermal field distribution of cholangiocarcinoma model by magnetic fluid hyperthermia]. Cai Z; Lu M Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):528-538. PubMed ID: 34180199 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of conductivity imaging using subject eddy currents induced by switching of MRI gradients. Oran OF; Ider YZ Magn Reson Med; 2017 May; 77(5):1926-1937. PubMed ID: 27364521 [TBL] [Abstract][Full Text] [Related]
20. A Comparative Study for Evaluating Passive Shielding of MRI Longitudinal Gradient Coil. Alsharafi SS; Badawi AM; El-Sharkawy AM Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4444-4447. PubMed ID: 34892206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]