These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33960334)

  • 21. Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid.
    Shi Y; Luo B; Liu R; Sang R; Cui D; Junge H; Du Y; Zhu T; Beller M; Li X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202313099. PubMed ID: 37694769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers.
    Yuan Y; Sun L; Wu G; Yuan Y; Zhan W; Wang X; Han X
    Inorg Chem; 2020 Feb; 59(3):2104-2110. PubMed ID: 31942798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of methanol from CO
    Tang Q; Shen Z; Huang L; He T; Adidharma H; Russell AG; Fan M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18539-18555. PubMed ID: 28685170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic Activation of Palladium Nanoparticles by Polyoxometalate-Attached Melem for Boosting Formic Acid Dehydrogenation Efficiency.
    Leng Y; Zhang C; Liu B; Liu M; Jiang P; Dai S
    ChemSusChem; 2018 Oct; 11(19):3396-3401. PubMed ID: 30074681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Few-Atomic Zero-Valent Palladium Ensembles for Efficient Reductive Dehydrogenation and Dehalogenation Catalysis.
    Li Z; Guo Z; Wu X; Jiang X; Li H; Xu J; Yang K; Lin D
    ACS Nano; 2023 Nov; 17(22):22859-22871. PubMed ID: 37930274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Amidoxime Polyacrylonitrile Bead-Supported Pd-Based Nanoparticles as High Efficiency Catalysts for Dehydrogenation of Formic Acid.
    Chen L; Hao D; Wang Z; Li Y; Gao G; Hao X; Zhang W; Jia M
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2389-2394. PubMed ID: 31492252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective and controlled H
    Zhang Q; Wang Y; Jin X; Liu X
    Nanoscale; 2023 Oct; 15(39):15975-15981. PubMed ID: 37782093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CO
    Chattaraj D; Majumder C
    Phys Chem Chem Phys; 2023 Jan; 25(3):2584-2594. PubMed ID: 36602161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study.
    Fan C; Zhu YA; Xu Y; Zhou Y; Zhou XG; Chen D
    J Chem Phys; 2012 Jul; 137(1):014703. PubMed ID: 22779676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. H
    Chaparro-Garnica JA; Navlani-García M; Salinas-Torres D; Morallón E; Cazorla-Amorós D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway.
    Goswami C; Saikia H; Jyoti Borah B; Jyoti Kalita M; Tada K; Tanaka S; Bharali P
    J Colloid Interface Sci; 2021 Apr; 587():446-456. PubMed ID: 33383434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes.
    Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B
    Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exclusive Formation of Formic Acid from CO
    Bai X; Chen W; Zhao C; Li S; Song Y; Ge R; Wei W; Sun Y
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12219-12223. PubMed ID: 28741847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Palladium Nanoparticles Supported on Titanium-Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation.
    Wu Y; Wen M; Navlani-García M; Kuwahara Y; Mori K; Yamashita H
    Chem Asian J; 2017 Apr; 12(8):860-867. PubMed ID: 28247487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A carbon-promoted galvanic replacement method to synthesize efficient PdNi nanoalloy catalyst.
    Guo Z; Liu W; He Z; Wang Z; Li W; Zhang M
    J Colloid Interface Sci; 2024 Jun; 663():369-378. PubMed ID: 38412722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Studies on the Stability and Reactivity of the Metal-Doped CeO
    Zhang W; Pu M; Lei M
    Langmuir; 2020 Jun; 36(21):5891-5901. PubMed ID: 32378412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO-induced formation of an interpenetrating bicuboctahedral Au2Pd18 kernel in nanosized Au2Pd28(CO)26(PEt3)10: formal replacement of an interior (μ12-Pd)2 fragment in the corresponding known isostructural homopalladium Pd30(CO)26(PEt3)10 with nonisovalent (μ12-Au)2 and resulting experimental/theoretical implications.
    Mednikov EG; Ivanov SA; Dahl LF
    Inorg Chem; 2011 Nov; 50(22):11795-806. PubMed ID: 22026509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.