These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33960356)

  • 21. Theoretical study of CO
    Thongnuam W; Maihom T; Choomwattana S; Injongkol Y; Boekfa B; Treesukol P; Limtrakul J
    Phys Chem Chem Phys; 2018 Oct; 20(39):25179-25185. PubMed ID: 29992213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Neutral, Coordinatively Saturated Tris-Carbonyl Mn(I)-PNP Pincer-Type Complex.
    Kostera S; Manca G; Gonsalvi L
    Chemistry; 2023 Dec; 29(70):e202302642. PubMed ID: 37720981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic activity of silicene biflakes for CO
    Vallejo Narváez WE; Vera de la Garza CG; Fomine S
    Phys Chem Chem Phys; 2023 Jun; 25(22):15287-15294. PubMed ID: 37222005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO
    Kar S; Sen R; Kothandaraman J; Goeppert A; Chowdhury R; Munoz SB; Haiges R; Prakash GKS
    J Am Chem Soc; 2019 Feb; 141(7):3160-3170. PubMed ID: 30753062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature and Solvent Effects on H
    Hu J; Bruch QJ; Miller AJM
    J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manganese Catalyzed Hydrogenation of Carbamates and Urea Derivatives.
    Das UK; Kumar A; Ben-David Y; Iron MA; Milstein D
    J Am Chem Soc; 2019 Aug; 141(33):12962-12966. PubMed ID: 31365248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.
    Rohmann K; Kothe J; Haenel MW; Englert U; Hölscher M; Leitner W
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8966-9. PubMed ID: 27356513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of iron complexes catalyzed in the
    Shen X; Wang W; Wang Q; Liu J; Huang F; Sun C; Yang C; Chen D
    Phys Chem Chem Phys; 2021 Aug; 23(31):16675-16689. PubMed ID: 34337631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of carbon monoxide and hydrogen from methanol using a ruthenium pincer complex: a DFT study.
    Geng L; Zhang M; Zhang Z; Li Y
    Dalton Trans; 2023 Oct; 52(38):13653-13661. PubMed ID: 37702003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Center on the Activity of PNP-Pincer Co(I)-Complexes for Catalytic Hydrogenation of CO
    Bothra N; Das S; Pati SK
    Chemistry; 2021 Nov; 27(66):16407-16414. PubMed ID: 34636450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic and microkinetic analysis of CO2 hydrogenation on ceria.
    Cheng Z; Lo CS
    Phys Chem Chem Phys; 2016 Mar; 18(11):7987-96. PubMed ID: 26955867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Bench-Stable, Non-Pincer-Type Mn(I) Alkylcarbonyl Complex.
    Kostera S; Weber S; Peruzzini M; Veiros LF; Kirchner K; Gonsalvi L
    Organometallics; 2021 May; 40(9):1213-1220. PubMed ID: 34054185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A DFT-based microkinetic study on methanol synthesis from CO
    Zhou Z; Qin B; Li S; Sun Y
    Phys Chem Chem Phys; 2021 Jan; 23(3):1888-1895. PubMed ID: 33458735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.
    Ge H; Jing Y; Yang X
    Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X; Yang X
    J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic Insight into Acceptorless Dehydrogenation of Methanol to Syngas Catalyzed by MACHO-Type Ruthenium and Manganese Complexes: A DFT Study.
    Yang L; Guo X; Ren Y; Gu R; Chen ZX; Zeng G
    Inorg Chem; 2023 Dec; 62(48):19516-19526. PubMed ID: 37966423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt-Catalyzed Hydrosilylation of Carbon Dioxide to the Formic Acid, Formaldehyde, and Methanol Level-How to Control the Catalytic Network?
    Cramer HH; Ye S; Neese F; Werlé C; Leitner W
    JACS Au; 2021 Nov; 1(11):2058-2069. PubMed ID: 34849511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NH3 Synthesis in the N2/H2 Reaction System using Cooperative Molecular Tungsten/Rhodium Catalysis in Ionic Hydrogenation: A DFT Study.
    Moha V; Leitner W; Hölscher M
    Chemistry; 2016 Feb; 22(8):2624-8. PubMed ID: 26711865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Efficient Carbon Dioxide Hydrogenation to Methanol Catalyzed by Zigzag Platinum-Cobalt Nanowires.
    Bai S; Shao Q; Feng Y; Bu L; Huang X
    Small; 2017 Jun; 13(22):. PubMed ID: 28418193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.