BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 33960594)

  • 21. FOXA1 inhibits prostate cancer neuroendocrine differentiation.
    Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J
    Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition.
    Li Y; Donmez N; Sahinalp C; Xie N; Wang Y; Xue H; Mo F; Beltran H; Gleave M; Wang Y; Collins C; Dong X
    Eur Urol; 2017 Jan; 71(1):68-78. PubMed ID: 27180064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of neuroendocrine acquisition and biomarker expression between neuroendocrine and usual prostatic carcinoma.
    Xiao GQ; Ho G; Suen C; Hurth KM
    Prostate; 2021 Jun; 81(8):469-477. PubMed ID: 33848377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mouse prostate cancer cell lines established from primary and postcastration recurrent tumors.
    Liao CP; Liang M; Cohen MB; Flesken-Nikitin A; Jeong JH; Nikitin AY; Roy-Burman P
    Horm Cancer; 2010 Feb; 1(1):44-54. PubMed ID: 20631921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer.
    Yamada Y; Venkadakrishnan VB; Mizuno K; Bakht M; Ku SY; Garcia MM; Beltran H
    Sci Transl Med; 2023 Nov; 15(722):eadf6732. PubMed ID: 37967200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program.
    Kim DH; Sun D; Storck WK; Welker Leng K; Jenkins C; Coleman DJ; Sampson D; Guan X; Kumaraswamy A; Rodansky ES; Urrutia JA; Schwartzman JA; Zhang C; Beltran H; Labrecque MP; Morrissey C; Lucas JM; Coleman IM; Nelson PS; Corey E; Handelman SK; Sexton JZ; Aggarwal R; Abida W; Feng FY; Small EJ; Spratt DE; Bankhead A; Rao A; Gesner EM; Attwell S; Lakhotia S; Campeau E; Yates JA; Xia Z; Alumkal JJ
    Clin Cancer Res; 2021 Sep; 27(17):4923-4936. PubMed ID: 34145028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer.
    Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T
    Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer.
    Wang J; Li J; Yin L; Pu T; Wei J; Karthikeyan V; Lin TP; Gao AC; Wu BJ
    Oncogene; 2022 Sep; 41(37):4307-4317. PubMed ID: 35986103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice.
    Sun F; Zhang ZW; Tan EM; Lim ZLR; Li Y; Wang XC; Chua SE; Li J; Cheung E; Yong EL
    Carcinogenesis; 2016 Jul; 37(7):701-711. PubMed ID: 27207661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer.
    Flores-Morales A; Bergmann TB; Lavallee C; Batth TS; Lin D; Lerdrup M; Friis S; Bartels A; Kristensen G; Krzyzanowska A; Xue H; Fazli L; Hansen KH; Røder MA; Brasso K; Moreira JM; Bjartell A; Wang Y; Olsen JV; Collins CC; Iglesias-Gato D
    Clin Cancer Res; 2019 Jan; 25(2):595-608. PubMed ID: 30274982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility.
    Jing N; Du X; Liang Y; Tao Z; Bao S; Xiao H; Dong B; Gao WQ; Fang YX
    J Exp Clin Cancer Res; 2024 May; 43(1):144. PubMed ID: 38745318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.
    Ku SY; Rosario S; Wang Y; Mu P; Seshadri M; Goodrich ZW; Goodrich MM; Labbé DP; Gomez EC; Wang J; Long HW; Xu B; Brown M; Loda M; Sawyers CL; Ellis L; Goodrich DW
    Science; 2017 Jan; 355(6320):78-83. PubMed ID: 28059767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer.
    Fernandes RC; Toubia J; Townley S; Hanson AR; Dredge BK; Pillman KA; Bert AG; Winter JM; Iggo R; Das R; Obinata D; ; Sandhu S; Risbridger GP; Taylor RA; Lawrence MG; Butler LM; Zoubeidi A; Gregory PA; Tilley WD; Hickey TE; Goodall GJ; Selth LA
    Cell Rep; 2021 Jan; 34(1):108585. PubMed ID: 33406413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Models of neuroendocrine prostate cancer.
    Berman-Booty LD; Knudsen KE
    Endocr Relat Cancer; 2015 Feb; 22(1):R33-49. PubMed ID: 25349195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis.
    Augello MA; Liu D; Deonarine LD; Robinson BD; Huang D; Stelloo S; Blattner M; Doane AS; Wong EWP; Chen Y; Rubin MA; Beltran H; Elemento O; Bergman AM; Zwart W; Sboner A; Dephoure N; Barbieri CE
    Cancer Cell; 2019 Apr; 35(4):603-617.e8. PubMed ID: 30930119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.
    Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L
    Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089
    [No Abstract]   [Full Text] [Related]  

  • 40. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer.
    Brady NJ; Bagadion AM; Singh R; Conteduca V; Van Emmenis L; Arceci E; Pakula H; Carelli R; Khani F; Bakht M; Sigouros M; Bareja R; Sboner A; Elemento O; Tagawa S; Nanus DM; Loda M; Beltran H; Robinson B; Rickman DS
    Nat Commun; 2021 Jun; 12(1):3372. PubMed ID: 34099734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.